File size: 2,931 Bytes
2afcb7e
 
 
 
 
926ff6c
2afcb7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
926ff6c
2afcb7e
 
 
 
 
 
 
 
926ff6c
2afcb7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
926ff6c
2afcb7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
926ff6c
2afcb7e
 
 
 
 
 
 
 
 
926ff6c
2afcb7e
 
 
 
 
 
 
 
926ff6c
2afcb7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
# File modified by authors of InstructPix2Pix from original (https://github.com/CompVis/stable-diffusion).
# See more details in LICENSE.

model:
  base_learning_rate: 1.0e-04
  target: ldm.models.diffusion.ddpm_edit.LatentDiffusion
  params:
    ckpt_path: stable_diffusion/models/ldm/stable-diffusion-v1/v1-5-pruned-emaonly.ckpt
    linear_start: 0.00085
    linear_end: 0.0120
    num_timesteps_cond: 1
    log_every_t: 200
    timesteps: 1000
    first_stage_key: edited
    cond_stage_key: edit
    image_size: 32
    channels: 4
    cond_stage_trainable: false   # Note: different from the one we trained before
    conditioning_key: hybrid
    monitor: val/loss_simple_ema
    scale_factor: 0.18215
    use_ema: true
    load_ema: false

    scheduler_config: # 10000 warmup steps
      target: ldm.lr_scheduler.LambdaLinearScheduler
      params:
        warm_up_steps: [ 0 ]
        cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
        f_start: [ 1.e-6 ]
        f_max: [ 1. ]
        f_min: [ 1. ]

    unet_config:
      target: ldm.modules.diffusionmodules.openaimodel.UNetModel
      params:
        image_size: 32 # unused
        in_channels: 8
        out_channels: 4
        model_channels: 320
        attention_resolutions: [ 4, 2, 1 ]
        num_res_blocks: 2
        channel_mult: [ 1, 2, 4, 4 ]
        num_heads: 8
        use_spatial_transformer: True
        transformer_depth: 1
        context_dim: 768
        use_checkpoint: True
        legacy: False

    first_stage_config:
      target: ldm.models.autoencoder.AutoencoderKL
      params:
        embed_dim: 4
        monitor: val/rec_loss
        ddconfig:
          double_z: true
          z_channels: 4
          resolution: 256
          in_channels: 3
          out_ch: 3
          ch: 128
          ch_mult:
          - 1
          - 2
          - 4
          - 4
          num_res_blocks: 2
          attn_resolutions: []
          dropout: 0.0
        lossconfig:
          target: torch.nn.Identity

    cond_stage_config:
      target: ldm.modules.encoders.modules.FrozenCLIPEmbedder

data:
  target: main.DataModuleFromConfig
  params:
    batch_size: 32
    num_workers: 2
    train:
      target: edit_dataset.EditDataset
      params:
        path: data/clip-filtered-dataset
        split: train
        min_resize_res: 256
        max_resize_res: 256
        crop_res: 256
        flip_prob: 0.5
    validation:
      target: edit_dataset.EditDataset
      params:
        path: data/clip-filtered-dataset
        split: val
        min_resize_res: 256
        max_resize_res: 256
        crop_res: 256

lightning:
  callbacks:
    image_logger:
      target: main.ImageLogger
      params:
        batch_frequency: 2000
        max_images: 2
        increase_log_steps: False

  trainer:
    max_epochs: 2000
    benchmark: True
    accumulate_grad_batches: 4
    check_val_every_n_epoch: 4