Spaces:
Running
on
T4
Running
on
T4
ablattmann
commited on
Commit
•
aea2f58
1
Parent(s):
182dd36
add code
Browse filesFormer-commit-id: e66308c7f2e64cb581c6d27ab6fbeb846828253b
This view is limited to 50 files because it contains too many changes.
See raw diff
- README.md +103 -3
- assets/inpainting.png +0 -0
- assets/reconstruction1.png +0 -0
- assets/reconstruction2.png +0 -0
- configs/autoencoder/autoencoder_kl_16x16x16.yaml +54 -0
- configs/autoencoder/autoencoder_kl_32x32x4.yaml +53 -0
- configs/autoencoder/autoencoder_kl_64x64x3.yaml +54 -0
- configs/autoencoder/autoencoder_kl_8x8x64.yaml +53 -0
- configs/latent-diffusion/lsun_churches_f8-autoencoder-ldm.yaml +95 -0
- data/DejaVuSans.ttf +0 -0
- data/example_conditioning/superresolution/sample_0.jpg +0 -0
- data/example_conditioning/text_conditional/sample_0.txt +1 -0
- data/imagenet_train_hr_indices.p.REMOVED.git-id +1 -0
- data/imagenet_val_hr_indices.p +0 -0
- data/index_synset.yaml +1000 -0
- data/inpainting_examples/6458524847_2f4c361183_k.png +0 -0
- data/inpainting_examples/6458524847_2f4c361183_k_mask.png +0 -0
- data/inpainting_examples/8399166846_f6fb4e4b8e_k.png +0 -0
- data/inpainting_examples/8399166846_f6fb4e4b8e_k_mask.png +0 -0
- data/inpainting_examples/alex-iby-G_Pk4D9rMLs.png +0 -0
- data/inpainting_examples/alex-iby-G_Pk4D9rMLs_mask.png +0 -0
- data/inpainting_examples/bench2.png +0 -0
- data/inpainting_examples/bench2_mask.png +0 -0
- data/inpainting_examples/bertrand-gabioud-CpuFzIsHYJ0.png +0 -0
- data/inpainting_examples/bertrand-gabioud-CpuFzIsHYJ0_mask.png +0 -0
- data/inpainting_examples/billow926-12-Wc-Zgx6Y.png +0 -0
- data/inpainting_examples/billow926-12-Wc-Zgx6Y_mask.png +0 -0
- data/inpainting_examples/overture-creations-5sI6fQgYIuo.png +0 -0
- data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png +0 -0
- data/inpainting_examples/photo-1583445095369-9c651e7e5d34.png +0 -0
- data/inpainting_examples/photo-1583445095369-9c651e7e5d34_mask.png +0 -0
- environment.yaml +27 -0
- ldm/data/__init__.py +0 -0
- ldm/data/base.py +23 -0
- ldm/data/imagenet.py +394 -0
- ldm/data/lsun.py +92 -0
- ldm/lr_scheduler.py +98 -0
- ldm/models/autoencoder.py +443 -0
- ldm/models/diffusion/__init__.py +0 -0
- ldm/models/diffusion/classifier.py +267 -0
- ldm/models/diffusion/ddim.py +186 -0
- ldm/models/diffusion/ddpm.py +1430 -0
- ldm/modules/attention.py +261 -0
- ldm/modules/diffusionmodules/__init__.py +0 -0
- ldm/modules/diffusionmodules/model.py +835 -0
- ldm/modules/diffusionmodules/openaimodel.py +936 -0
- ldm/modules/diffusionmodules/util.py +261 -0
- ldm/modules/distributions/__init__.py +0 -0
- ldm/modules/distributions/distributions.py +92 -0
- ldm/modules/ema.py +76 -0
README.md
CHANGED
@@ -1,4 +1,104 @@
|
|
1 |
-
#
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
...coming soon™
|
|
|
1 |
+
# Latent Diffusion Models
|
2 |
+
|
3 |
+
## Requirements
|
4 |
+
A suitable [conda](https://conda.io/) environment named `ldm` can be created
|
5 |
+
and activated with:
|
6 |
+
|
7 |
+
```
|
8 |
+
conda env create -f environment.yaml
|
9 |
+
conda activate ldm
|
10 |
+
```
|
11 |
+
|
12 |
+
# Model Zoo
|
13 |
+
|
14 |
+
## Pretrained Autoencoding Models
|
15 |
+
![rec2](assets/reconstruction2.png)
|
16 |
+
|
17 |
+
|
18 |
+
| Model | FID vs val | PSNR | PSIM | Link | Comments
|
19 |
+
|-------------------------|------------|----------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|
20 |
+
| f=4, VQ (Z=8192, d=3) | 0.58 | 27.43 +/- 4.26 | 0.53 +/- 0.21 | https://ommer-lab.com/files/latent-diffusion/vq-f4.zip | |
|
21 |
+
| f=4, VQ (Z=8192, d=3) | 1.06 | 25.21 +/- 4.17 | 0.72 +/- 0.26 | https://heibox.uni-heidelberg.de/f/9c6681f64bb94338a069/?dl=1 | no attention |
|
22 |
+
| f=8, VQ (Z=16384, d=4) | 1.14 | 23.07 +/- 3.99 | 1.17 +/- 0.36 | https://ommer-lab.com/files/latent-diffusion/vq-f8.zip | |
|
23 |
+
| f=8, VQ (Z=256, d=4) | 1.49 | 22.35 +/- 3.81 | 1.26 +/- 0.37 | https://ommer-lab.com/files/latent-diffusion/vq-f8-n256.zip |
|
24 |
+
| f=16, VQ (Z=16384, d=8) | 5.15 | 20.83 +/- 3.61 | 1.73 +/- 0.43 | https://heibox.uni-heidelberg.de/f/0e42b04e2e904890a9b6/?dl=1 | |
|
25 |
+
| | | | | | |
|
26 |
+
| f=4, KL | 0.27 | 27.53 +/- 4.54 | 0.55 +/- 0.24 | https://ommer-lab.com/files/latent-diffusion/kl-f4.zip | |
|
27 |
+
| f=8, KL | 0.90 | 24.19 +/- 4.19 | 1.02 +/- 0.35 | https://ommer-lab.com/files/latent-diffusion/kl-f8.zip | |
|
28 |
+
| f=16, KL (d=16) | 0.87 | 24.08 +/- 4.22 | 1.07 +/- 0.36 | https://ommer-lab.com/files/latent-diffusion/kl-f16.zip | |
|
29 |
+
| f=32, KL (d=64) | 2.04 | 22.27 +/- 3.93 | 1.41 +/- 0.40 | https://ommer-lab.com/files/latent-diffusion/kl-f32.zip | |
|
30 |
+
|
31 |
+
### Get the models
|
32 |
+
|
33 |
+
Running the following script downloads und extracts all available pretrained autoencoding models.
|
34 |
+
|
35 |
+
```shell script
|
36 |
+
bash scripts/download_first_stages.sh
|
37 |
+
```
|
38 |
+
|
39 |
+
The first stage models can then be found in `models/first_stage_models/<model_spec>`
|
40 |
+
|
41 |
+
## Pretrained LDMs
|
42 |
+
| Datset | Task | Model | FID | IS | Prec | Recall | Link | Comments
|
43 |
+
|---------------------------------|------|--------------|---------------|-----------------|------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
|
44 |
+
| CelebA-HQ | Unconditional Image Synthesis | LDM-VQ-4 (200 DDIM steps, eta=0)| 5.11 (5.11) | 3.29 | 0.72 | 0.49 | https://ommer-lab.com/files/latent-diffusion/celeba.zip | |
|
45 |
+
| FFHQ | Unconditional Image Synthesis | LDM-VQ-4 (200 DDIM steps, eta=1)| 4.98 (4.98) | 4.50 (4.50) | 0.73 | 0.50 | https://ommer-lab.com/files/latent-diffusion/ffhq.zip | |
|
46 |
+
| LSUN-Churches | Unconditional Image Synthesis | LDM-KL-8 (400 DDIM steps, eta=0)| 4.02 (4.02) | 2.72 | 0.64 | 0.52 | https://ommer-lab.com/files/latent-diffusion/lsun_churches.zip | |
|
47 |
+
| LSUN-Bedrooms | Unconditional Image Synthesis | LDM-VQ-4 (200 DDIM steps, eta=1)| 2.95 (3.0) | 2.22 (2.23)| 0.66 | 0.48 | https://ommer-lab.com/files/latent-diffusion/lsun_bedrooms.zip | |
|
48 |
+
| ImageNet | Class-conditional Image Synthesis | LDM-VQ-8 (200 DDIM steps, eta=1) | 7.77(7.76)* /15.82** | 201.56(209.52)* /78.82** | 0.84* / 0.65** | 0.35* / 0.63** | https://ommer-lab.com/files/latent-diffusion/cin.zip | *: w/ guiding, classifier_scale 10 **: w/o guiding, scores in bracket calculated with script provided by [ADM](https://github.com/openai/guided-diffusion) |
|
49 |
+
| Conceptual Captions | Text-conditional Image Synthesis | LDM-VQ-f4 (100 DDIM steps, eta=0) | 16.79 | 13.89 | N/A | N/A | https://ommer-lab.com/files/latent-diffusion/text2img.zip | finetuned from LAION |
|
50 |
+
| OpenImages | Super-resolution | N/A | N/A | N/A | N/A | N/A | https://ommer-lab.com/files/latent-diffusion/sr_bsr.zip | BSR image degradation |
|
51 |
+
| OpenImages | Layout-to-Image Synthesis | LDM-VQ-4 (200 DDIM steps, eta=0) | 32.02 | 15.92 | N/A | N/A | https://ommer-lab.com/files/latent-diffusion/layout2img_model.zip | |
|
52 |
+
| Landscapes (finetuned 512) | Semantic Image Synthesis | LDM-VQ-4 (100 DDIM steps, eta=1) | N/A | N/A | N/A | N/A | https://ommer-lab.com/files/latent-diffusion/semantic_synthesis.zip | |
|
53 |
+
|
54 |
+
|
55 |
+
### Get the models
|
56 |
+
|
57 |
+
The LDMs listed above can jointly be downloaded and extracted via
|
58 |
+
|
59 |
+
```shell script
|
60 |
+
bash scripts/download_models.sh
|
61 |
+
```
|
62 |
+
|
63 |
+
The models can then be found in `models/ldm/<model_spec>`.
|
64 |
+
|
65 |
+
### Sampling with unconditional models
|
66 |
+
|
67 |
+
We provide a first script for sampling from our unconditional models. Start it via
|
68 |
+
|
69 |
+
```shell script
|
70 |
+
CUDA_VISIBLE_DEVICES=<GPU_ID> python scripts/sample_diffusion.py -r models/ldm/<model_spec>/model.ckpt -l <logdir> -n <\#samples> --batch_size <batch_size> -c <\#ddim steps> -e <\#eta>
|
71 |
+
```
|
72 |
+
|
73 |
+
# Inpainting
|
74 |
+
![inpainting](assets/inpainting.png)
|
75 |
+
|
76 |
+
Download the pre-trained weights
|
77 |
+
```
|
78 |
+
wget XXX
|
79 |
+
```
|
80 |
+
|
81 |
+
and sample with
|
82 |
+
```
|
83 |
+
python scripts/inpaint.py --indir data/inpainting_examples/ --outdir outputs/inpainting_results
|
84 |
+
```
|
85 |
+
`indir` should contain images `*.png` and masks `<image_fname>_mask.png` like
|
86 |
+
the examples provided in `data/inpainting_examples`.
|
87 |
+
|
88 |
+
|
89 |
+
## Comin Soon...
|
90 |
+
|
91 |
+
* Code for training LDMs and the corresponding compression models.
|
92 |
+
* Inference scripts for conditional LDMs for various conditioning modalities.
|
93 |
+
* In the meantime, you can play with our colab notebook https://colab.research.google.com/drive/1xqzUi2iXQXDqXBHQGP9Mqt2YrYW6cx-J?usp=sharing
|
94 |
+
* We will also release some further pretrained models.
|
95 |
+
## Comments
|
96 |
+
|
97 |
+
- Our codebase for the diffusion models builds heavily on [OpenAI's codebase](https://github.com/openai/guided-diffusion)
|
98 |
+
and [https://github.com/lucidrains/denoising-diffusion-pytorch](https://github.com/lucidrains/denoising-diffusion-pytorch).
|
99 |
+
Thanks for open-sourcing!
|
100 |
+
|
101 |
+
- The implementation of the transformer encoder is from [x-transformers](https://github.com/lucidrains/x-transformers) by [lucidrains](https://github.com/lucidrains?tab=repositories).
|
102 |
+
|
103 |
+
|
104 |
|
|
assets/inpainting.png
ADDED
assets/reconstruction1.png
ADDED
assets/reconstruction2.png
ADDED
configs/autoencoder/autoencoder_kl_16x16x16.yaml
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
base_learning_rate: 4.5e-6
|
3 |
+
target: ldm.models.autoencoder.AutoencoderKL
|
4 |
+
params:
|
5 |
+
monitor: "val/rec_loss"
|
6 |
+
embed_dim: 16
|
7 |
+
lossconfig:
|
8 |
+
target: ldm.modules.losses.LPIPSWithDiscriminator
|
9 |
+
params:
|
10 |
+
disc_start: 50001
|
11 |
+
kl_weight: 0.000001
|
12 |
+
disc_weight: 0.5
|
13 |
+
|
14 |
+
ddconfig:
|
15 |
+
double_z: True
|
16 |
+
z_channels: 16
|
17 |
+
resolution: 256
|
18 |
+
in_channels: 3
|
19 |
+
out_ch: 3
|
20 |
+
ch: 128
|
21 |
+
ch_mult: [ 1,1,2,2,4] # num_down = len(ch_mult)-1
|
22 |
+
num_res_blocks: 2
|
23 |
+
attn_resolutions: [16]
|
24 |
+
dropout: 0.0
|
25 |
+
|
26 |
+
|
27 |
+
data:
|
28 |
+
target: main.DataModuleFromConfig
|
29 |
+
params:
|
30 |
+
batch_size: 12
|
31 |
+
wrap: True
|
32 |
+
train:
|
33 |
+
target: ldm.data.imagenet.ImageNetSRTrain
|
34 |
+
params:
|
35 |
+
size: 256
|
36 |
+
degradation: pil_nearest
|
37 |
+
validation:
|
38 |
+
target: ldm.data.imagenet.ImageNetSRValidation
|
39 |
+
params:
|
40 |
+
size: 256
|
41 |
+
degradation: pil_nearest
|
42 |
+
|
43 |
+
lightning:
|
44 |
+
callbacks:
|
45 |
+
image_logger:
|
46 |
+
target: main.ImageLogger
|
47 |
+
params:
|
48 |
+
batch_frequency: 1000
|
49 |
+
max_images: 8
|
50 |
+
increase_log_steps: True
|
51 |
+
|
52 |
+
trainer:
|
53 |
+
benchmark: True
|
54 |
+
accumulate_grad_batches: 2
|
configs/autoencoder/autoencoder_kl_32x32x4.yaml
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
base_learning_rate: 4.5e-6
|
3 |
+
target: ldm.models.autoencoder.AutoencoderKL
|
4 |
+
params:
|
5 |
+
monitor: "val/rec_loss"
|
6 |
+
embed_dim: 4
|
7 |
+
lossconfig:
|
8 |
+
target: ldm.modules.losses.LPIPSWithDiscriminator
|
9 |
+
params:
|
10 |
+
disc_start: 50001
|
11 |
+
kl_weight: 0.000001
|
12 |
+
disc_weight: 0.5
|
13 |
+
|
14 |
+
ddconfig:
|
15 |
+
double_z: True
|
16 |
+
z_channels: 4
|
17 |
+
resolution: 256
|
18 |
+
in_channels: 3
|
19 |
+
out_ch: 3
|
20 |
+
ch: 128
|
21 |
+
ch_mult: [ 1,2,4,4 ] # num_down = len(ch_mult)-1
|
22 |
+
num_res_blocks: 2
|
23 |
+
attn_resolutions: [ ]
|
24 |
+
dropout: 0.0
|
25 |
+
|
26 |
+
data:
|
27 |
+
target: main.DataModuleFromConfig
|
28 |
+
params:
|
29 |
+
batch_size: 12
|
30 |
+
wrap: True
|
31 |
+
train:
|
32 |
+
target: ldm.data.imagenet.ImageNetSRTrain
|
33 |
+
params:
|
34 |
+
size: 256
|
35 |
+
degradation: pil_nearest
|
36 |
+
validation:
|
37 |
+
target: ldm.data.imagenet.ImageNetSRValidation
|
38 |
+
params:
|
39 |
+
size: 256
|
40 |
+
degradation: pil_nearest
|
41 |
+
|
42 |
+
lightning:
|
43 |
+
callbacks:
|
44 |
+
image_logger:
|
45 |
+
target: main.ImageLogger
|
46 |
+
params:
|
47 |
+
batch_frequency: 1000
|
48 |
+
max_images: 8
|
49 |
+
increase_log_steps: True
|
50 |
+
|
51 |
+
trainer:
|
52 |
+
benchmark: True
|
53 |
+
accumulate_grad_batches: 2
|
configs/autoencoder/autoencoder_kl_64x64x3.yaml
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
base_learning_rate: 4.5e-6
|
3 |
+
target: ldm.models.autoencoder.AutoencoderKL
|
4 |
+
params:
|
5 |
+
monitor: "val/rec_loss"
|
6 |
+
embed_dim: 3
|
7 |
+
lossconfig:
|
8 |
+
target: ldm.modules.losses.LPIPSWithDiscriminator
|
9 |
+
params:
|
10 |
+
disc_start: 50001
|
11 |
+
kl_weight: 0.000001
|
12 |
+
disc_weight: 0.5
|
13 |
+
|
14 |
+
ddconfig:
|
15 |
+
double_z: True
|
16 |
+
z_channels: 3
|
17 |
+
resolution: 256
|
18 |
+
in_channels: 3
|
19 |
+
out_ch: 3
|
20 |
+
ch: 128
|
21 |
+
ch_mult: [ 1,2,4 ] # num_down = len(ch_mult)-1
|
22 |
+
num_res_blocks: 2
|
23 |
+
attn_resolutions: [ ]
|
24 |
+
dropout: 0.0
|
25 |
+
|
26 |
+
|
27 |
+
data:
|
28 |
+
target: main.DataModuleFromConfig
|
29 |
+
params:
|
30 |
+
batch_size: 12
|
31 |
+
wrap: True
|
32 |
+
train:
|
33 |
+
target: ldm.data.imagenet.ImageNetSRTrain
|
34 |
+
params:
|
35 |
+
size: 256
|
36 |
+
degradation: pil_nearest
|
37 |
+
validation:
|
38 |
+
target: ldm.data.imagenet.ImageNetSRValidation
|
39 |
+
params:
|
40 |
+
size: 256
|
41 |
+
degradation: pil_nearest
|
42 |
+
|
43 |
+
lightning:
|
44 |
+
callbacks:
|
45 |
+
image_logger:
|
46 |
+
target: main.ImageLogger
|
47 |
+
params:
|
48 |
+
batch_frequency: 1000
|
49 |
+
max_images: 8
|
50 |
+
increase_log_steps: True
|
51 |
+
|
52 |
+
trainer:
|
53 |
+
benchmark: True
|
54 |
+
accumulate_grad_batches: 2
|
configs/autoencoder/autoencoder_kl_8x8x64.yaml
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
base_learning_rate: 4.5e-6
|
3 |
+
target: ldm.models.autoencoder.AutoencoderKL
|
4 |
+
params:
|
5 |
+
monitor: "val/rec_loss"
|
6 |
+
embed_dim: 64
|
7 |
+
lossconfig:
|
8 |
+
target: ldm.modules.losses.LPIPSWithDiscriminator
|
9 |
+
params:
|
10 |
+
disc_start: 50001
|
11 |
+
kl_weight: 0.000001
|
12 |
+
disc_weight: 0.5
|
13 |
+
|
14 |
+
ddconfig:
|
15 |
+
double_z: True
|
16 |
+
z_channels: 64
|
17 |
+
resolution: 256
|
18 |
+
in_channels: 3
|
19 |
+
out_ch: 3
|
20 |
+
ch: 128
|
21 |
+
ch_mult: [ 1,1,2,2,4,4] # num_down = len(ch_mult)-1
|
22 |
+
num_res_blocks: 2
|
23 |
+
attn_resolutions: [16,8]
|
24 |
+
dropout: 0.0
|
25 |
+
|
26 |
+
data:
|
27 |
+
target: main.DataModuleFromConfig
|
28 |
+
params:
|
29 |
+
batch_size: 12
|
30 |
+
wrap: True
|
31 |
+
train:
|
32 |
+
target: ldm.data.imagenet.ImageNetSRTrain
|
33 |
+
params:
|
34 |
+
size: 256
|
35 |
+
degradation: pil_nearest
|
36 |
+
validation:
|
37 |
+
target: ldm.data.imagenet.ImageNetSRValidation
|
38 |
+
params:
|
39 |
+
size: 256
|
40 |
+
degradation: pil_nearest
|
41 |
+
|
42 |
+
lightning:
|
43 |
+
callbacks:
|
44 |
+
image_logger:
|
45 |
+
target: main.ImageLogger
|
46 |
+
params:
|
47 |
+
batch_frequency: 1000
|
48 |
+
max_images: 8
|
49 |
+
increase_log_steps: True
|
50 |
+
|
51 |
+
trainer:
|
52 |
+
benchmark: True
|
53 |
+
accumulate_grad_batches: 2
|
configs/latent-diffusion/lsun_churches_f8-autoencoder-ldm.yaml
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
base_learning_rate: 5.0e-5 # set to target_lr by starting main.py with '--scale_lr False'
|
3 |
+
target: ldm.models.diffusion.ddpm.LatentDiffusion
|
4 |
+
params:
|
5 |
+
linear_start: 0.0015
|
6 |
+
linear_end: 0.0155
|
7 |
+
num_timesteps_cond: 1
|
8 |
+
log_every_t: 200
|
9 |
+
timesteps: 1000
|
10 |
+
loss_type: l1
|
11 |
+
first_stage_key: "image"
|
12 |
+
cond_stage_key: "image"
|
13 |
+
image_size: 32
|
14 |
+
channels: 4
|
15 |
+
cond_stage_trainable: False
|
16 |
+
concat_mode: False
|
17 |
+
scale_by_std: True
|
18 |
+
monitor: 'val/loss_simple_ema'
|
19 |
+
|
20 |
+
scheduler_config: # 10000 warmup steps
|
21 |
+
target: ldm.lr_scheduler.LambdaLinearScheduler
|
22 |
+
params:
|
23 |
+
warm_up_steps: [10000]
|
24 |
+
cycle_lengths: [10000000000000]
|
25 |
+
f_start: [1.e-6]
|
26 |
+
f_max: [1.]
|
27 |
+
f_min: [ 1.]
|
28 |
+
|
29 |
+
unet_config:
|
30 |
+
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
31 |
+
params:
|
32 |
+
image_size: 32
|
33 |
+
in_channels: 4
|
34 |
+
out_channels: 4
|
35 |
+
model_channels: 192
|
36 |
+
attention_resolutions: [ 1, 2, 4, 8 ] # 32, 16, 8, 4
|
37 |
+
num_res_blocks: 2
|
38 |
+
channel_mult: [ 1,2,2,4,4 ] # 32, 16, 8, 4, 2
|
39 |
+
num_heads: 8
|
40 |
+
use_scale_shift_norm: True
|
41 |
+
resblock_updown: True
|
42 |
+
|
43 |
+
first_stage_config:
|
44 |
+
target: ldm.models.autoencoder.AutoencoderKL
|
45 |
+
params:
|
46 |
+
embed_dim: 4
|
47 |
+
monitor: "val/rec_loss"
|
48 |
+
ckpt_path: "/export/compvis-nfs/user/ablattma/logs/braket/2021-11-26T11-25-56_lsun_churches-convae-f8-ft_from_oi/checkpoints/step=000180071-fidfrechet_inception_distance=2.335.ckpt"
|
49 |
+
ddconfig:
|
50 |
+
double_z: True
|
51 |
+
z_channels: 4
|
52 |
+
resolution: 256
|
53 |
+
in_channels: 3
|
54 |
+
out_ch: 3
|
55 |
+
ch: 128
|
56 |
+
ch_mult: [ 1,2,4,4 ] # num_down = len(ch_mult)-1
|
57 |
+
num_res_blocks: 2
|
58 |
+
attn_resolutions: [ ]
|
59 |
+
dropout: 0.0
|
60 |
+
lossconfig:
|
61 |
+
target: torch.nn.Identity
|
62 |
+
|
63 |
+
cond_stage_config: "__is_unconditional__"
|
64 |
+
|
65 |
+
data:
|
66 |
+
target: main.DataModuleFromConfig
|
67 |
+
params:
|
68 |
+
batch_size: 24 # TODO: was 96 in our experiments
|
69 |
+
num_workers: 5
|
70 |
+
wrap: False
|
71 |
+
train:
|
72 |
+
target: ldm.data.lsun.LSUNChurchesTrain
|
73 |
+
params:
|
74 |
+
size: 256
|
75 |
+
validation:
|
76 |
+
target: ldm.data.lsun.LSUNChurchesValidation
|
77 |
+
params:
|
78 |
+
size: 256
|
79 |
+
|
80 |
+
lightning:
|
81 |
+
callbacks:
|
82 |
+
image_logger:
|
83 |
+
target: main.ImageLogger
|
84 |
+
params:
|
85 |
+
batch_frequency: 1000 # TODO 5000
|
86 |
+
max_images: 8
|
87 |
+
increase_log_steps: False
|
88 |
+
|
89 |
+
metrics_over_trainsteps_checkpoint:
|
90 |
+
target: pytorch_lightning.callbacks.ModelCheckpoint
|
91 |
+
params:
|
92 |
+
every_n_train_steps: 20000
|
93 |
+
|
94 |
+
trainer:
|
95 |
+
benchmark: True
|
data/DejaVuSans.ttf
ADDED
Binary file (757 kB). View file
|
|
data/example_conditioning/superresolution/sample_0.jpg
ADDED
data/example_conditioning/text_conditional/sample_0.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
A basket of cerries
|
data/imagenet_train_hr_indices.p.REMOVED.git-id
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
b8d6d4689d2ecf32147e9cc2f5e6c50e072df26f
|
data/imagenet_val_hr_indices.p
ADDED
Binary file (146 kB). View file
|
|
data/index_synset.yaml
ADDED
@@ -0,0 +1,1000 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
0: n01440764
|
2 |
+
1: n01443537
|
3 |
+
2: n01484850
|
4 |
+
3: n01491361
|
5 |
+
4: n01494475
|
6 |
+
5: n01496331
|
7 |
+
6: n01498041
|
8 |
+
7: n01514668
|
9 |
+
8: n07646067
|
10 |
+
9: n01518878
|
11 |
+
10: n01530575
|
12 |
+
11: n01531178
|
13 |
+
12: n01532829
|
14 |
+
13: n01534433
|
15 |
+
14: n01537544
|
16 |
+
15: n01558993
|
17 |
+
16: n01560419
|
18 |
+
17: n01580077
|
19 |
+
18: n01582220
|
20 |
+
19: n01592084
|
21 |
+
20: n01601694
|
22 |
+
21: n13382471
|
23 |
+
22: n01614925
|
24 |
+
23: n01616318
|
25 |
+
24: n01622779
|
26 |
+
25: n01629819
|
27 |
+
26: n01630670
|
28 |
+
27: n01631663
|
29 |
+
28: n01632458
|
30 |
+
29: n01632777
|
31 |
+
30: n01641577
|
32 |
+
31: n01644373
|
33 |
+
32: n01644900
|
34 |
+
33: n01664065
|
35 |
+
34: n01665541
|
36 |
+
35: n01667114
|
37 |
+
36: n01667778
|
38 |
+
37: n01669191
|
39 |
+
38: n01675722
|
40 |
+
39: n01677366
|
41 |
+
40: n01682714
|
42 |
+
41: n01685808
|
43 |
+
42: n01687978
|
44 |
+
43: n01688243
|
45 |
+
44: n01689811
|
46 |
+
45: n01692333
|
47 |
+
46: n01693334
|
48 |
+
47: n01694178
|
49 |
+
48: n01695060
|
50 |
+
49: n01697457
|
51 |
+
50: n01698640
|
52 |
+
51: n01704323
|
53 |
+
52: n01728572
|
54 |
+
53: n01728920
|
55 |
+
54: n01729322
|
56 |
+
55: n01729977
|
57 |
+
56: n01734418
|
58 |
+
57: n01735189
|
59 |
+
58: n01737021
|
60 |
+
59: n01739381
|
61 |
+
60: n01740131
|
62 |
+
61: n01742172
|
63 |
+
62: n01744401
|
64 |
+
63: n01748264
|
65 |
+
64: n01749939
|
66 |
+
65: n01751748
|
67 |
+
66: n01753488
|
68 |
+
67: n01755581
|
69 |
+
68: n01756291
|
70 |
+
69: n01768244
|
71 |
+
70: n01770081
|
72 |
+
71: n01770393
|
73 |
+
72: n01773157
|
74 |
+
73: n01773549
|
75 |
+
74: n01773797
|
76 |
+
75: n01774384
|
77 |
+
76: n01774750
|
78 |
+
77: n01775062
|
79 |
+
78: n04432308
|
80 |
+
79: n01784675
|
81 |
+
80: n01795545
|
82 |
+
81: n01796340
|
83 |
+
82: n01797886
|
84 |
+
83: n01798484
|
85 |
+
84: n01806143
|
86 |
+
85: n07647321
|
87 |
+
86: n07647496
|
88 |
+
87: n01817953
|
89 |
+
88: n01818515
|
90 |
+
89: n01819313
|
91 |
+
90: n01820546
|
92 |
+
91: n01824575
|
93 |
+
92: n01828970
|
94 |
+
93: n01829413
|
95 |
+
94: n01833805
|
96 |
+
95: n01843065
|
97 |
+
96: n01843383
|
98 |
+
97: n01847000
|
99 |
+
98: n01855032
|
100 |
+
99: n07646821
|
101 |
+
100: n01860187
|
102 |
+
101: n01871265
|
103 |
+
102: n01872772
|
104 |
+
103: n01873310
|
105 |
+
104: n01877812
|
106 |
+
105: n01882714
|
107 |
+
106: n01883070
|
108 |
+
107: n01910747
|
109 |
+
108: n01914609
|
110 |
+
109: n01917289
|
111 |
+
110: n01924916
|
112 |
+
111: n01930112
|
113 |
+
112: n01943899
|
114 |
+
113: n01944390
|
115 |
+
114: n13719102
|
116 |
+
115: n01950731
|
117 |
+
116: n01955084
|
118 |
+
117: n01968897
|
119 |
+
118: n01978287
|
120 |
+
119: n01978455
|
121 |
+
120: n01980166
|
122 |
+
121: n01981276
|
123 |
+
122: n01983481
|
124 |
+
123: n01984695
|
125 |
+
124: n01985128
|
126 |
+
125: n01986214
|
127 |
+
126: n01990800
|
128 |
+
127: n02002556
|
129 |
+
128: n02002724
|
130 |
+
129: n02006656
|
131 |
+
130: n02007558
|
132 |
+
131: n02009229
|
133 |
+
132: n02009912
|
134 |
+
133: n02011460
|
135 |
+
134: n03126707
|
136 |
+
135: n02013706
|
137 |
+
136: n02017213
|
138 |
+
137: n02018207
|
139 |
+
138: n02018795
|
140 |
+
139: n02025239
|
141 |
+
140: n02027492
|
142 |
+
141: n02028035
|
143 |
+
142: n02033041
|
144 |
+
143: n02037110
|
145 |
+
144: n02051845
|
146 |
+
145: n02056570
|
147 |
+
146: n02058221
|
148 |
+
147: n02066245
|
149 |
+
148: n02071294
|
150 |
+
149: n02074367
|
151 |
+
150: n02077923
|
152 |
+
151: n08742578
|
153 |
+
152: n02085782
|
154 |
+
153: n02085936
|
155 |
+
154: n02086079
|
156 |
+
155: n02086240
|
157 |
+
156: n02086646
|
158 |
+
157: n02086910
|
159 |
+
158: n02087046
|
160 |
+
159: n02087394
|
161 |
+
160: n02088094
|
162 |
+
161: n02088238
|
163 |
+
162: n02088364
|
164 |
+
163: n02088466
|
165 |
+
164: n02088632
|
166 |
+
165: n02089078
|
167 |
+
166: n02089867
|
168 |
+
167: n02089973
|
169 |
+
168: n02090379
|
170 |
+
169: n02090622
|
171 |
+
170: n02090721
|
172 |
+
171: n02091032
|
173 |
+
172: n02091134
|
174 |
+
173: n02091244
|
175 |
+
174: n02091467
|
176 |
+
175: n02091635
|
177 |
+
176: n02091831
|
178 |
+
177: n02092002
|
179 |
+
178: n02092339
|
180 |
+
179: n02093256
|
181 |
+
180: n02093428
|
182 |
+
181: n02093647
|
183 |
+
182: n02093754
|
184 |
+
183: n02093859
|
185 |
+
184: n02093991
|
186 |
+
185: n02094114
|
187 |
+
186: n02094258
|
188 |
+
187: n02094433
|
189 |
+
188: n02095314
|
190 |
+
189: n02095570
|
191 |
+
190: n02095889
|
192 |
+
191: n02096051
|
193 |
+
192: n02096177
|
194 |
+
193: n02096294
|
195 |
+
194: n02096437
|
196 |
+
195: n02096585
|
197 |
+
196: n02097047
|
198 |
+
197: n02097130
|
199 |
+
198: n02097209
|
200 |
+
199: n02097298
|
201 |
+
200: n02097474
|
202 |
+
201: n02097658
|
203 |
+
202: n02098105
|
204 |
+
203: n02098286
|
205 |
+
204: n02098413
|
206 |
+
205: n02099267
|
207 |
+
206: n02099429
|
208 |
+
207: n02099601
|
209 |
+
208: n02099712
|
210 |
+
209: n02099849
|
211 |
+
210: n02100236
|
212 |
+
211: n02100583
|
213 |
+
212: n02100735
|
214 |
+
213: n02100877
|
215 |
+
214: n02101006
|
216 |
+
215: n02101388
|
217 |
+
216: n02101556
|
218 |
+
217: n02102040
|
219 |
+
218: n02102177
|
220 |
+
219: n02102318
|
221 |
+
220: n02102480
|
222 |
+
221: n02102973
|
223 |
+
222: n02104029
|
224 |
+
223: n02104365
|
225 |
+
224: n02105056
|
226 |
+
225: n02105162
|
227 |
+
226: n02105251
|
228 |
+
227: n02105412
|
229 |
+
228: n02105505
|
230 |
+
229: n02105641
|
231 |
+
230: n02105855
|
232 |
+
231: n02106030
|
233 |
+
232: n02106166
|
234 |
+
233: n02106382
|
235 |
+
234: n02106550
|
236 |
+
235: n02106662
|
237 |
+
236: n02107142
|
238 |
+
237: n02107312
|
239 |
+
238: n02107574
|
240 |
+
239: n02107683
|
241 |
+
240: n02107908
|
242 |
+
241: n02108000
|
243 |
+
242: n02108089
|
244 |
+
243: n02108422
|
245 |
+
244: n02108551
|
246 |
+
245: n02108915
|
247 |
+
246: n02109047
|
248 |
+
247: n02109525
|
249 |
+
248: n02109961
|
250 |
+
249: n02110063
|
251 |
+
250: n02110185
|
252 |
+
251: n02110341
|
253 |
+
252: n02110627
|
254 |
+
253: n02110806
|
255 |
+
254: n02110958
|
256 |
+
255: n02111129
|
257 |
+
256: n02111277
|
258 |
+
257: n02111500
|
259 |
+
258: n02111889
|
260 |
+
259: n02112018
|
261 |
+
260: n02112137
|
262 |
+
261: n02112350
|
263 |
+
262: n02112706
|
264 |
+
263: n02113023
|
265 |
+
264: n02113186
|
266 |
+
265: n02113624
|
267 |
+
266: n02113712
|
268 |
+
267: n02113799
|
269 |
+
268: n02113978
|
270 |
+
269: n02114367
|
271 |
+
270: n02114548
|
272 |
+
271: n02114712
|
273 |
+
272: n02114855
|
274 |
+
273: n02115641
|
275 |
+
274: n02115913
|
276 |
+
275: n02116738
|
277 |
+
276: n02117135
|
278 |
+
277: n02119022
|
279 |
+
278: n02119789
|
280 |
+
279: n02120079
|
281 |
+
280: n02120505
|
282 |
+
281: n02123045
|
283 |
+
282: n02123159
|
284 |
+
283: n02123394
|
285 |
+
284: n02123597
|
286 |
+
285: n02124075
|
287 |
+
286: n02125311
|
288 |
+
287: n02127052
|
289 |
+
288: n02128385
|
290 |
+
289: n02128757
|
291 |
+
290: n02128925
|
292 |
+
291: n02129165
|
293 |
+
292: n02129604
|
294 |
+
293: n02130308
|
295 |
+
294: n02132136
|
296 |
+
295: n02133161
|
297 |
+
296: n02134084
|
298 |
+
297: n02134418
|
299 |
+
298: n02137549
|
300 |
+
299: n02138441
|
301 |
+
300: n02165105
|
302 |
+
301: n02165456
|
303 |
+
302: n02167151
|
304 |
+
303: n02168699
|
305 |
+
304: n02169497
|
306 |
+
305: n02172182
|
307 |
+
306: n02174001
|
308 |
+
307: n02177972
|
309 |
+
308: n03373237
|
310 |
+
309: n07975909
|
311 |
+
310: n02219486
|
312 |
+
311: n02226429
|
313 |
+
312: n02229544
|
314 |
+
313: n02231487
|
315 |
+
314: n02233338
|
316 |
+
315: n02236044
|
317 |
+
316: n02256656
|
318 |
+
317: n02259212
|
319 |
+
318: n02264363
|
320 |
+
319: n02268443
|
321 |
+
320: n02268853
|
322 |
+
321: n02276258
|
323 |
+
322: n02277742
|
324 |
+
323: n02279972
|
325 |
+
324: n02280649
|
326 |
+
325: n02281406
|
327 |
+
326: n02281787
|
328 |
+
327: n02317335
|
329 |
+
328: n02319095
|
330 |
+
329: n02321529
|
331 |
+
330: n02325366
|
332 |
+
331: n02326432
|
333 |
+
332: n02328150
|
334 |
+
333: n02342885
|
335 |
+
334: n02346627
|
336 |
+
335: n02356798
|
337 |
+
336: n02361337
|
338 |
+
337: n05262120
|
339 |
+
338: n02364673
|
340 |
+
339: n02389026
|
341 |
+
340: n02391049
|
342 |
+
341: n02395406
|
343 |
+
342: n02396427
|
344 |
+
343: n02397096
|
345 |
+
344: n02398521
|
346 |
+
345: n02403003
|
347 |
+
346: n02408429
|
348 |
+
347: n02410509
|
349 |
+
348: n02412080
|
350 |
+
349: n02415577
|
351 |
+
350: n02417914
|
352 |
+
351: n02422106
|
353 |
+
352: n02422699
|
354 |
+
353: n02423022
|
355 |
+
354: n02437312
|
356 |
+
355: n02437616
|
357 |
+
356: n10771990
|
358 |
+
357: n14765497
|
359 |
+
358: n02443114
|
360 |
+
359: n02443484
|
361 |
+
360: n14765785
|
362 |
+
361: n02445715
|
363 |
+
362: n02447366
|
364 |
+
363: n02454379
|
365 |
+
364: n02457408
|
366 |
+
365: n02480495
|
367 |
+
366: n02480855
|
368 |
+
367: n02481823
|
369 |
+
368: n02483362
|
370 |
+
369: n02483708
|
371 |
+
370: n02484975
|
372 |
+
371: n02486261
|
373 |
+
372: n02486410
|
374 |
+
373: n02487347
|
375 |
+
374: n02488291
|
376 |
+
375: n02488702
|
377 |
+
376: n02489166
|
378 |
+
377: n02490219
|
379 |
+
378: n02492035
|
380 |
+
379: n02492660
|
381 |
+
380: n02493509
|
382 |
+
381: n02493793
|
383 |
+
382: n02494079
|
384 |
+
383: n02497673
|
385 |
+
384: n02500267
|
386 |
+
385: n02504013
|
387 |
+
386: n02504458
|
388 |
+
387: n02509815
|
389 |
+
388: n02510455
|
390 |
+
389: n02514041
|
391 |
+
390: n07783967
|
392 |
+
391: n02536864
|
393 |
+
392: n02606052
|
394 |
+
393: n02607072
|
395 |
+
394: n02640242
|
396 |
+
395: n02641379
|
397 |
+
396: n02643566
|
398 |
+
397: n02655020
|
399 |
+
398: n02666347
|
400 |
+
399: n02667093
|
401 |
+
400: n02669723
|
402 |
+
401: n02672831
|
403 |
+
402: n02676566
|
404 |
+
403: n02687172
|
405 |
+
404: n02690373
|
406 |
+
405: n02692877
|
407 |
+
406: n02699494
|
408 |
+
407: n02701002
|
409 |
+
408: n02704792
|
410 |
+
409: n02708093
|
411 |
+
410: n02727426
|
412 |
+
411: n08496334
|
413 |
+
412: n02747177
|
414 |
+
413: n02749479
|
415 |
+
414: n02769748
|
416 |
+
415: n02776631
|
417 |
+
416: n02777292
|
418 |
+
417: n02782329
|
419 |
+
418: n02783161
|
420 |
+
419: n02786058
|
421 |
+
420: n02787622
|
422 |
+
421: n02788148
|
423 |
+
422: n02790996
|
424 |
+
423: n02791124
|
425 |
+
424: n02791270
|
426 |
+
425: n02793495
|
427 |
+
426: n02794156
|
428 |
+
427: n02795169
|
429 |
+
428: n02797295
|
430 |
+
429: n02799071
|
431 |
+
430: n02802426
|
432 |
+
431: n02804515
|
433 |
+
432: n02804610
|
434 |
+
433: n02807133
|
435 |
+
434: n02808304
|
436 |
+
435: n02808440
|
437 |
+
436: n02814533
|
438 |
+
437: n02814860
|
439 |
+
438: n02815834
|
440 |
+
439: n02817516
|
441 |
+
440: n02823428
|
442 |
+
441: n02823750
|
443 |
+
442: n02825657
|
444 |
+
443: n02834397
|
445 |
+
444: n02835271
|
446 |
+
445: n02837789
|
447 |
+
446: n02840245
|
448 |
+
447: n02841315
|
449 |
+
448: n02843684
|
450 |
+
449: n02859443
|
451 |
+
450: n02860847
|
452 |
+
451: n02865351
|
453 |
+
452: n02869837
|
454 |
+
453: n02870880
|
455 |
+
454: n02871525
|
456 |
+
455: n02877765
|
457 |
+
456: n02880308
|
458 |
+
457: n02883205
|
459 |
+
458: n02892201
|
460 |
+
459: n02892767
|
461 |
+
460: n02894605
|
462 |
+
461: n02895154
|
463 |
+
462: n12520864
|
464 |
+
463: n02909870
|
465 |
+
464: n02910353
|
466 |
+
465: n02916936
|
467 |
+
466: n02917067
|
468 |
+
467: n02927161
|
469 |
+
468: n02930766
|
470 |
+
469: n02939185
|
471 |
+
470: n02948072
|
472 |
+
471: n02950826
|
473 |
+
472: n02951358
|
474 |
+
473: n02951585
|
475 |
+
474: n02963159
|
476 |
+
475: n02965783
|
477 |
+
476: n02966193
|
478 |
+
477: n02966687
|
479 |
+
478: n02971356
|
480 |
+
479: n02974003
|
481 |
+
480: n02977058
|
482 |
+
481: n02978881
|
483 |
+
482: n02979186
|
484 |
+
483: n02980441
|
485 |
+
484: n02981792
|
486 |
+
485: n02988304
|
487 |
+
486: n02992211
|
488 |
+
487: n02992529
|
489 |
+
488: n13652994
|
490 |
+
489: n03000134
|
491 |
+
490: n03000247
|
492 |
+
491: n03000684
|
493 |
+
492: n03014705
|
494 |
+
493: n03016953
|
495 |
+
494: n03017168
|
496 |
+
495: n03018349
|
497 |
+
496: n03026506
|
498 |
+
497: n03028079
|
499 |
+
498: n03032252
|
500 |
+
499: n03041632
|
501 |
+
500: n03042490
|
502 |
+
501: n03045698
|
503 |
+
502: n03047690
|
504 |
+
503: n03062245
|
505 |
+
504: n03063599
|
506 |
+
505: n03063689
|
507 |
+
506: n03065424
|
508 |
+
507: n03075370
|
509 |
+
508: n03085013
|
510 |
+
509: n03089624
|
511 |
+
510: n03095699
|
512 |
+
511: n03100240
|
513 |
+
512: n03109150
|
514 |
+
513: n03110669
|
515 |
+
514: n03124043
|
516 |
+
515: n03124170
|
517 |
+
516: n15142452
|
518 |
+
517: n03126707
|
519 |
+
518: n03127747
|
520 |
+
519: n03127925
|
521 |
+
520: n03131574
|
522 |
+
521: n03133878
|
523 |
+
522: n03134739
|
524 |
+
523: n03141823
|
525 |
+
524: n03146219
|
526 |
+
525: n03160309
|
527 |
+
526: n03179701
|
528 |
+
527: n03180011
|
529 |
+
528: n03187595
|
530 |
+
529: n03188531
|
531 |
+
530: n03196217
|
532 |
+
531: n03197337
|
533 |
+
532: n03201208
|
534 |
+
533: n03207743
|
535 |
+
534: n03207941
|
536 |
+
535: n03208938
|
537 |
+
536: n03216828
|
538 |
+
537: n03218198
|
539 |
+
538: n13872072
|
540 |
+
539: n03223299
|
541 |
+
540: n03240683
|
542 |
+
541: n03249569
|
543 |
+
542: n07647870
|
544 |
+
543: n03255030
|
545 |
+
544: n03259401
|
546 |
+
545: n03271574
|
547 |
+
546: n03272010
|
548 |
+
547: n03272562
|
549 |
+
548: n03290653
|
550 |
+
549: n13869788
|
551 |
+
550: n03297495
|
552 |
+
551: n03314780
|
553 |
+
552: n03325584
|
554 |
+
553: n03337140
|
555 |
+
554: n03344393
|
556 |
+
555: n03345487
|
557 |
+
556: n03347037
|
558 |
+
557: n03355925
|
559 |
+
558: n03372029
|
560 |
+
559: n03376595
|
561 |
+
560: n03379051
|
562 |
+
561: n03384352
|
563 |
+
562: n03388043
|
564 |
+
563: n03388183
|
565 |
+
564: n03388549
|
566 |
+
565: n03393912
|
567 |
+
566: n03394916
|
568 |
+
567: n03400231
|
569 |
+
568: n03404251
|
570 |
+
569: n03417042
|
571 |
+
570: n03424325
|
572 |
+
571: n03425413
|
573 |
+
572: n03443371
|
574 |
+
573: n03444034
|
575 |
+
574: n03445777
|
576 |
+
575: n03445924
|
577 |
+
576: n03447447
|
578 |
+
577: n03447721
|
579 |
+
578: n08286342
|
580 |
+
579: n03452741
|
581 |
+
580: n03457902
|
582 |
+
581: n03459775
|
583 |
+
582: n03461385
|
584 |
+
583: n03467068
|
585 |
+
584: n03476684
|
586 |
+
585: n03476991
|
587 |
+
586: n03478589
|
588 |
+
587: n03482001
|
589 |
+
588: n03482405
|
590 |
+
589: n03483316
|
591 |
+
590: n03485407
|
592 |
+
591: n03485794
|
593 |
+
592: n03492542
|
594 |
+
593: n03494278
|
595 |
+
594: n03495570
|
596 |
+
595: n10161363
|
597 |
+
596: n03498962
|
598 |
+
597: n03527565
|
599 |
+
598: n03529860
|
600 |
+
599: n09218315
|
601 |
+
600: n03532672
|
602 |
+
601: n03534580
|
603 |
+
602: n03535780
|
604 |
+
603: n03538406
|
605 |
+
604: n03544143
|
606 |
+
605: n03584254
|
607 |
+
606: n03584829
|
608 |
+
607: n03590841
|
609 |
+
608: n03594734
|
610 |
+
609: n03594945
|
611 |
+
610: n03595614
|
612 |
+
611: n03598930
|
613 |
+
612: n03599486
|
614 |
+
613: n03602883
|
615 |
+
614: n03617480
|
616 |
+
615: n03623198
|
617 |
+
616: n15102712
|
618 |
+
617: n03630383
|
619 |
+
618: n03633091
|
620 |
+
619: n03637318
|
621 |
+
620: n03642806
|
622 |
+
621: n03649909
|
623 |
+
622: n03657121
|
624 |
+
623: n03658185
|
625 |
+
624: n07977870
|
626 |
+
625: n03662601
|
627 |
+
626: n03666591
|
628 |
+
627: n03670208
|
629 |
+
628: n03673027
|
630 |
+
629: n03676483
|
631 |
+
630: n03680355
|
632 |
+
631: n03690938
|
633 |
+
632: n03691459
|
634 |
+
633: n03692522
|
635 |
+
634: n03697007
|
636 |
+
635: n03706229
|
637 |
+
636: n03709823
|
638 |
+
637: n03710193
|
639 |
+
638: n03710637
|
640 |
+
639: n03710721
|
641 |
+
640: n03717622
|
642 |
+
641: n03720891
|
643 |
+
642: n03721384
|
644 |
+
643: n03725035
|
645 |
+
644: n03729826
|
646 |
+
645: n03733131
|
647 |
+
646: n03733281
|
648 |
+
647: n03733805
|
649 |
+
648: n03742115
|
650 |
+
649: n03743016
|
651 |
+
650: n03759954
|
652 |
+
651: n03761084
|
653 |
+
652: n03763968
|
654 |
+
653: n03764736
|
655 |
+
654: n03769881
|
656 |
+
655: n03770439
|
657 |
+
656: n03770679
|
658 |
+
657: n03773504
|
659 |
+
658: n03775071
|
660 |
+
659: n03775546
|
661 |
+
660: n03776460
|
662 |
+
661: n03777568
|
663 |
+
662: n03777754
|
664 |
+
663: n03781244
|
665 |
+
664: n03782006
|
666 |
+
665: n03785016
|
667 |
+
666: n14955889
|
668 |
+
667: n03787032
|
669 |
+
668: n03788195
|
670 |
+
669: n03788365
|
671 |
+
670: n03791053
|
672 |
+
671: n03792782
|
673 |
+
672: n03792972
|
674 |
+
673: n03793489
|
675 |
+
674: n03794056
|
676 |
+
675: n03796401
|
677 |
+
676: n03803284
|
678 |
+
677: n13652335
|
679 |
+
678: n03814639
|
680 |
+
679: n03814906
|
681 |
+
680: n03825788
|
682 |
+
681: n03832673
|
683 |
+
682: n03837869
|
684 |
+
683: n03838899
|
685 |
+
684: n03840681
|
686 |
+
685: n03841143
|
687 |
+
686: n03843555
|
688 |
+
687: n03854065
|
689 |
+
688: n03857828
|
690 |
+
689: n03866082
|
691 |
+
690: n03868242
|
692 |
+
691: n03868863
|
693 |
+
692: n07281099
|
694 |
+
693: n03873416
|
695 |
+
694: n03874293
|
696 |
+
695: n03874599
|
697 |
+
696: n03876231
|
698 |
+
697: n03877472
|
699 |
+
698: n08053121
|
700 |
+
699: n03884397
|
701 |
+
700: n03887697
|
702 |
+
701: n03888257
|
703 |
+
702: n03888605
|
704 |
+
703: n03891251
|
705 |
+
704: n03891332
|
706 |
+
705: n03895866
|
707 |
+
706: n03899768
|
708 |
+
707: n03902125
|
709 |
+
708: n03903868
|
710 |
+
709: n03908618
|
711 |
+
710: n03908714
|
712 |
+
711: n03916031
|
713 |
+
712: n03920288
|
714 |
+
713: n03924679
|
715 |
+
714: n03929660
|
716 |
+
715: n03929855
|
717 |
+
716: n03930313
|
718 |
+
717: n03930630
|
719 |
+
718: n03934042
|
720 |
+
719: n03935335
|
721 |
+
720: n03937543
|
722 |
+
721: n03938244
|
723 |
+
722: n03942813
|
724 |
+
723: n03944341
|
725 |
+
724: n03947888
|
726 |
+
725: n03950228
|
727 |
+
726: n03954731
|
728 |
+
727: n03956157
|
729 |
+
728: n03958227
|
730 |
+
729: n03961711
|
731 |
+
730: n03967562
|
732 |
+
731: n03970156
|
733 |
+
732: n03976467
|
734 |
+
733: n08620881
|
735 |
+
734: n03977966
|
736 |
+
735: n03980874
|
737 |
+
736: n03982430
|
738 |
+
737: n03983396
|
739 |
+
738: n03991062
|
740 |
+
739: n03992509
|
741 |
+
740: n03995372
|
742 |
+
741: n03998194
|
743 |
+
742: n04004767
|
744 |
+
743: n13937284
|
745 |
+
744: n04008634
|
746 |
+
745: n04009801
|
747 |
+
746: n04019541
|
748 |
+
747: n04023962
|
749 |
+
748: n13413294
|
750 |
+
749: n04033901
|
751 |
+
750: n04033995
|
752 |
+
751: n04037443
|
753 |
+
752: n04039381
|
754 |
+
753: n09403211
|
755 |
+
754: n04041544
|
756 |
+
755: n04044716
|
757 |
+
756: n04049303
|
758 |
+
757: n04065272
|
759 |
+
758: n07056680
|
760 |
+
759: n04069434
|
761 |
+
760: n04070727
|
762 |
+
761: n04074963
|
763 |
+
762: n04081281
|
764 |
+
763: n04086273
|
765 |
+
764: n04090263
|
766 |
+
765: n04099969
|
767 |
+
766: n04111531
|
768 |
+
767: n04116512
|
769 |
+
768: n04118538
|
770 |
+
769: n04118776
|
771 |
+
770: n04120489
|
772 |
+
771: n04125116
|
773 |
+
772: n04127249
|
774 |
+
773: n04131690
|
775 |
+
774: n04133789
|
776 |
+
775: n04136333
|
777 |
+
776: n04141076
|
778 |
+
777: n04141327
|
779 |
+
778: n04141975
|
780 |
+
779: n04146614
|
781 |
+
780: n04147291
|
782 |
+
781: n04149813
|
783 |
+
782: n04152593
|
784 |
+
783: n04154340
|
785 |
+
784: n07917272
|
786 |
+
785: n04162706
|
787 |
+
786: n04179913
|
788 |
+
787: n04192698
|
789 |
+
788: n04200800
|
790 |
+
789: n04201297
|
791 |
+
790: n04204238
|
792 |
+
791: n04204347
|
793 |
+
792: n04208427
|
794 |
+
793: n04209133
|
795 |
+
794: n04209239
|
796 |
+
795: n04228054
|
797 |
+
796: n04229816
|
798 |
+
797: n04235860
|
799 |
+
798: n04238763
|
800 |
+
799: n04239074
|
801 |
+
800: n04243546
|
802 |
+
801: n04251144
|
803 |
+
802: n04252077
|
804 |
+
803: n04252225
|
805 |
+
804: n04254120
|
806 |
+
805: n04254680
|
807 |
+
806: n04254777
|
808 |
+
807: n04258138
|
809 |
+
808: n04259630
|
810 |
+
809: n04263257
|
811 |
+
810: n04264628
|
812 |
+
811: n04265275
|
813 |
+
812: n04266014
|
814 |
+
813: n04270147
|
815 |
+
814: n04273569
|
816 |
+
815: n04275363
|
817 |
+
816: n05605498
|
818 |
+
817: n04285008
|
819 |
+
818: n04286575
|
820 |
+
819: n08646566
|
821 |
+
820: n04310018
|
822 |
+
821: n04311004
|
823 |
+
822: n04311174
|
824 |
+
823: n04317175
|
825 |
+
824: n04325704
|
826 |
+
825: n04326547
|
827 |
+
826: n04328186
|
828 |
+
827: n04330267
|
829 |
+
828: n04332243
|
830 |
+
829: n04335435
|
831 |
+
830: n04337157
|
832 |
+
831: n04344873
|
833 |
+
832: n04346328
|
834 |
+
833: n04347754
|
835 |
+
834: n04350905
|
836 |
+
835: n04355338
|
837 |
+
836: n04355933
|
838 |
+
837: n04356056
|
839 |
+
838: n04357314
|
840 |
+
839: n04366367
|
841 |
+
840: n04367480
|
842 |
+
841: n04370456
|
843 |
+
842: n04371430
|
844 |
+
843: n14009946
|
845 |
+
844: n04372370
|
846 |
+
845: n04376876
|
847 |
+
846: n04380533
|
848 |
+
847: n04389033
|
849 |
+
848: n04392985
|
850 |
+
849: n04398044
|
851 |
+
850: n04399382
|
852 |
+
851: n04404412
|
853 |
+
852: n04409515
|
854 |
+
853: n04417672
|
855 |
+
854: n04418357
|
856 |
+
855: n04423845
|
857 |
+
856: n04428191
|
858 |
+
857: n04429376
|
859 |
+
858: n04435653
|
860 |
+
859: n04442312
|
861 |
+
860: n04443257
|
862 |
+
861: n04447861
|
863 |
+
862: n04456115
|
864 |
+
863: n04458633
|
865 |
+
864: n04461696
|
866 |
+
865: n04462240
|
867 |
+
866: n04465666
|
868 |
+
867: n04467665
|
869 |
+
868: n04476259
|
870 |
+
869: n04479046
|
871 |
+
870: n04482393
|
872 |
+
871: n04483307
|
873 |
+
872: n04485082
|
874 |
+
873: n04486054
|
875 |
+
874: n04487081
|
876 |
+
875: n04487394
|
877 |
+
876: n04493381
|
878 |
+
877: n04501370
|
879 |
+
878: n04505470
|
880 |
+
879: n04507155
|
881 |
+
880: n04509417
|
882 |
+
881: n04515003
|
883 |
+
882: n04517823
|
884 |
+
883: n04522168
|
885 |
+
884: n04523525
|
886 |
+
885: n04525038
|
887 |
+
886: n04525305
|
888 |
+
887: n04532106
|
889 |
+
888: n04532670
|
890 |
+
889: n04536866
|
891 |
+
890: n04540053
|
892 |
+
891: n04542943
|
893 |
+
892: n04548280
|
894 |
+
893: n04548362
|
895 |
+
894: n04550184
|
896 |
+
895: n04552348
|
897 |
+
896: n04553703
|
898 |
+
897: n04554684
|
899 |
+
898: n04557648
|
900 |
+
899: n04560804
|
901 |
+
900: n04562935
|
902 |
+
901: n04579145
|
903 |
+
902: n04579667
|
904 |
+
903: n04584207
|
905 |
+
904: n04589890
|
906 |
+
905: n04590129
|
907 |
+
906: n04591157
|
908 |
+
907: n04591713
|
909 |
+
908: n10782135
|
910 |
+
909: n04596742
|
911 |
+
910: n04598010
|
912 |
+
911: n04599235
|
913 |
+
912: n04604644
|
914 |
+
913: n14423870
|
915 |
+
914: n04612504
|
916 |
+
915: n04613696
|
917 |
+
916: n06359193
|
918 |
+
917: n06596364
|
919 |
+
918: n06785654
|
920 |
+
919: n06794110
|
921 |
+
920: n06874185
|
922 |
+
921: n07248320
|
923 |
+
922: n07565083
|
924 |
+
923: n07657664
|
925 |
+
924: n07583066
|
926 |
+
925: n07584110
|
927 |
+
926: n07590611
|
928 |
+
927: n07613480
|
929 |
+
928: n07614500
|
930 |
+
929: n07615774
|
931 |
+
930: n07684084
|
932 |
+
931: n07693725
|
933 |
+
932: n07695742
|
934 |
+
933: n07697313
|
935 |
+
934: n07697537
|
936 |
+
935: n07711569
|
937 |
+
936: n07714571
|
938 |
+
937: n07714990
|
939 |
+
938: n07715103
|
940 |
+
939: n12159804
|
941 |
+
940: n12160303
|
942 |
+
941: n12160857
|
943 |
+
942: n07717556
|
944 |
+
943: n07718472
|
945 |
+
944: n07718747
|
946 |
+
945: n07720875
|
947 |
+
946: n07730033
|
948 |
+
947: n13001041
|
949 |
+
948: n07742313
|
950 |
+
949: n12630144
|
951 |
+
950: n14991210
|
952 |
+
951: n07749582
|
953 |
+
952: n07753113
|
954 |
+
953: n07753275
|
955 |
+
954: n07753592
|
956 |
+
955: n07754684
|
957 |
+
956: n07760859
|
958 |
+
957: n07768694
|
959 |
+
958: n07802026
|
960 |
+
959: n07831146
|
961 |
+
960: n07836838
|
962 |
+
961: n07860988
|
963 |
+
962: n07871810
|
964 |
+
963: n07873807
|
965 |
+
964: n07875152
|
966 |
+
965: n07880968
|
967 |
+
966: n07892512
|
968 |
+
967: n07920052
|
969 |
+
968: n13904665
|
970 |
+
969: n07932039
|
971 |
+
970: n09193705
|
972 |
+
971: n09229709
|
973 |
+
972: n09246464
|
974 |
+
973: n09256479
|
975 |
+
974: n09288635
|
976 |
+
975: n09332890
|
977 |
+
976: n09399592
|
978 |
+
977: n09421951
|
979 |
+
978: n09428293
|
980 |
+
979: n09468604
|
981 |
+
980: n09472597
|
982 |
+
981: n09835506
|
983 |
+
982: n10148035
|
984 |
+
983: n10565667
|
985 |
+
984: n11879895
|
986 |
+
985: n11939491
|
987 |
+
986: n12057211
|
988 |
+
987: n12144580
|
989 |
+
988: n12267677
|
990 |
+
989: n12620546
|
991 |
+
990: n12768682
|
992 |
+
991: n12985857
|
993 |
+
992: n12998815
|
994 |
+
993: n13037406
|
995 |
+
994: n13040303
|
996 |
+
995: n13044778
|
997 |
+
996: n13052670
|
998 |
+
997: n13054560
|
999 |
+
998: n13133613
|
1000 |
+
999: n15075141
|
data/inpainting_examples/6458524847_2f4c361183_k.png
ADDED
data/inpainting_examples/6458524847_2f4c361183_k_mask.png
ADDED
data/inpainting_examples/8399166846_f6fb4e4b8e_k.png
ADDED
data/inpainting_examples/8399166846_f6fb4e4b8e_k_mask.png
ADDED
data/inpainting_examples/alex-iby-G_Pk4D9rMLs.png
ADDED
data/inpainting_examples/alex-iby-G_Pk4D9rMLs_mask.png
ADDED
data/inpainting_examples/bench2.png
ADDED
data/inpainting_examples/bench2_mask.png
ADDED
data/inpainting_examples/bertrand-gabioud-CpuFzIsHYJ0.png
ADDED
data/inpainting_examples/bertrand-gabioud-CpuFzIsHYJ0_mask.png
ADDED
data/inpainting_examples/billow926-12-Wc-Zgx6Y.png
ADDED
data/inpainting_examples/billow926-12-Wc-Zgx6Y_mask.png
ADDED
data/inpainting_examples/overture-creations-5sI6fQgYIuo.png
ADDED
data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png
ADDED
data/inpainting_examples/photo-1583445095369-9c651e7e5d34.png
ADDED
data/inpainting_examples/photo-1583445095369-9c651e7e5d34_mask.png
ADDED
environment.yaml
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: ldm
|
2 |
+
channels:
|
3 |
+
- pytorch
|
4 |
+
- defaults
|
5 |
+
dependencies:
|
6 |
+
- python=3.8.5
|
7 |
+
- pip=20.3
|
8 |
+
- cudatoolkit=11.0
|
9 |
+
- pytorch=1.7.0
|
10 |
+
- torchvision=0.8.1
|
11 |
+
- numpy=1.19.2
|
12 |
+
- pip:
|
13 |
+
- albumentations==0.4.3
|
14 |
+
- opencv-python==4.1.2.30
|
15 |
+
- pudb==2019.2
|
16 |
+
- imageio==2.9.0
|
17 |
+
- imageio-ffmpeg==0.4.2
|
18 |
+
- pytorch-lightning==1.4.2
|
19 |
+
- omegaconf==2.1.1
|
20 |
+
- test-tube>=0.7.5
|
21 |
+
- streamlit>=0.73.1
|
22 |
+
- einops==0.3.0
|
23 |
+
- torch-fidelity==0.3.0
|
24 |
+
- transformers==4.3.1
|
25 |
+
- -e git+https://github.com/CompVis/taming-transformers.git@master#egg=taming-transformers
|
26 |
+
- -e git+https://github.com/openai/CLIP.git@main#egg=clip
|
27 |
+
- -e .
|
ldm/data/__init__.py
ADDED
File without changes
|
ldm/data/base.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import abstractmethod
|
2 |
+
from torch.utils.data import Dataset, ConcatDataset, ChainDataset, IterableDataset
|
3 |
+
|
4 |
+
|
5 |
+
class Txt2ImgIterableBaseDataset(IterableDataset):
|
6 |
+
'''
|
7 |
+
Define an interface to make the IterableDatasets for text2img data chainable
|
8 |
+
'''
|
9 |
+
def __init__(self, num_records=0, valid_ids=None, size=256):
|
10 |
+
super().__init__()
|
11 |
+
self.num_records = num_records
|
12 |
+
self.valid_ids = valid_ids
|
13 |
+
self.sample_ids = valid_ids
|
14 |
+
self.size = size
|
15 |
+
|
16 |
+
print(f'{self.__class__.__name__} dataset contains {self.__len__()} examples.')
|
17 |
+
|
18 |
+
def __len__(self):
|
19 |
+
return self.num_records
|
20 |
+
|
21 |
+
@abstractmethod
|
22 |
+
def __iter__(self):
|
23 |
+
pass
|
ldm/data/imagenet.py
ADDED
@@ -0,0 +1,394 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os, yaml, pickle, shutil, tarfile, glob
|
2 |
+
import cv2
|
3 |
+
import albumentations
|
4 |
+
import PIL
|
5 |
+
import numpy as np
|
6 |
+
import torchvision.transforms.functional as TF
|
7 |
+
from omegaconf import OmegaConf
|
8 |
+
from functools import partial
|
9 |
+
from PIL import Image
|
10 |
+
from tqdm import tqdm
|
11 |
+
from torch.utils.data import Dataset, Subset
|
12 |
+
|
13 |
+
import taming.data.utils as tdu
|
14 |
+
from taming.data.imagenet import str_to_indices, give_synsets_from_indices, download, retrieve
|
15 |
+
from taming.data.imagenet import ImagePaths
|
16 |
+
|
17 |
+
from ldm.modules.image_degradation import degradation_fn_bsr, degradation_fn_bsr_light
|
18 |
+
|
19 |
+
|
20 |
+
def synset2idx(path_to_yaml="data/index_synset.yaml"):
|
21 |
+
with open(path_to_yaml) as f:
|
22 |
+
di2s = yaml.load(f)
|
23 |
+
return dict((v,k) for k,v in di2s.items())
|
24 |
+
|
25 |
+
|
26 |
+
class ImageNetBase(Dataset):
|
27 |
+
def __init__(self, config=None):
|
28 |
+
self.config = config or OmegaConf.create()
|
29 |
+
if not type(self.config)==dict:
|
30 |
+
self.config = OmegaConf.to_container(self.config)
|
31 |
+
self.keep_orig_class_label = self.config.get("keep_orig_class_label", False)
|
32 |
+
self.process_images = True # if False we skip loading & processing images and self.data contains filepaths
|
33 |
+
self._prepare()
|
34 |
+
self._prepare_synset_to_human()
|
35 |
+
self._prepare_idx_to_synset()
|
36 |
+
self._prepare_human_to_integer_label()
|
37 |
+
self._load()
|
38 |
+
|
39 |
+
def __len__(self):
|
40 |
+
return len(self.data)
|
41 |
+
|
42 |
+
def __getitem__(self, i):
|
43 |
+
return self.data[i]
|
44 |
+
|
45 |
+
def _prepare(self):
|
46 |
+
raise NotImplementedError()
|
47 |
+
|
48 |
+
def _filter_relpaths(self, relpaths):
|
49 |
+
ignore = set([
|
50 |
+
"n06596364_9591.JPEG",
|
51 |
+
])
|
52 |
+
relpaths = [rpath for rpath in relpaths if not rpath.split("/")[-1] in ignore]
|
53 |
+
if "sub_indices" in self.config:
|
54 |
+
indices = str_to_indices(self.config["sub_indices"])
|
55 |
+
synsets = give_synsets_from_indices(indices, path_to_yaml=self.idx2syn) # returns a list of strings
|
56 |
+
self.synset2idx = synset2idx(path_to_yaml=self.idx2syn)
|
57 |
+
files = []
|
58 |
+
for rpath in relpaths:
|
59 |
+
syn = rpath.split("/")[0]
|
60 |
+
if syn in synsets:
|
61 |
+
files.append(rpath)
|
62 |
+
return files
|
63 |
+
else:
|
64 |
+
return relpaths
|
65 |
+
|
66 |
+
def _prepare_synset_to_human(self):
|
67 |
+
SIZE = 2655750
|
68 |
+
URL = "https://heibox.uni-heidelberg.de/f/9f28e956cd304264bb82/?dl=1"
|
69 |
+
self.human_dict = os.path.join(self.root, "synset_human.txt")
|
70 |
+
if (not os.path.exists(self.human_dict) or
|
71 |
+
not os.path.getsize(self.human_dict)==SIZE):
|
72 |
+
download(URL, self.human_dict)
|
73 |
+
|
74 |
+
def _prepare_idx_to_synset(self):
|
75 |
+
URL = "https://heibox.uni-heidelberg.de/f/d835d5b6ceda4d3aa910/?dl=1"
|
76 |
+
self.idx2syn = os.path.join(self.root, "index_synset.yaml")
|
77 |
+
if (not os.path.exists(self.idx2syn)):
|
78 |
+
download(URL, self.idx2syn)
|
79 |
+
|
80 |
+
def _prepare_human_to_integer_label(self):
|
81 |
+
URL = "https://heibox.uni-heidelberg.de/f/2362b797d5be43b883f6/?dl=1"
|
82 |
+
self.human2integer = os.path.join(self.root, "imagenet1000_clsidx_to_labels.txt")
|
83 |
+
if (not os.path.exists(self.human2integer)):
|
84 |
+
download(URL, self.human2integer)
|
85 |
+
with open(self.human2integer, "r") as f:
|
86 |
+
lines = f.read().splitlines()
|
87 |
+
assert len(lines) == 1000
|
88 |
+
self.human2integer_dict = dict()
|
89 |
+
for line in lines:
|
90 |
+
value, key = line.split(":")
|
91 |
+
self.human2integer_dict[key] = int(value)
|
92 |
+
|
93 |
+
def _load(self):
|
94 |
+
with open(self.txt_filelist, "r") as f:
|
95 |
+
self.relpaths = f.read().splitlines()
|
96 |
+
l1 = len(self.relpaths)
|
97 |
+
self.relpaths = self._filter_relpaths(self.relpaths)
|
98 |
+
print("Removed {} files from filelist during filtering.".format(l1 - len(self.relpaths)))
|
99 |
+
|
100 |
+
self.synsets = [p.split("/")[0] for p in self.relpaths]
|
101 |
+
self.abspaths = [os.path.join(self.datadir, p) for p in self.relpaths]
|
102 |
+
|
103 |
+
unique_synsets = np.unique(self.synsets)
|
104 |
+
class_dict = dict((synset, i) for i, synset in enumerate(unique_synsets))
|
105 |
+
if not self.keep_orig_class_label:
|
106 |
+
self.class_labels = [class_dict[s] for s in self.synsets]
|
107 |
+
else:
|
108 |
+
self.class_labels = [self.synset2idx[s] for s in self.synsets]
|
109 |
+
|
110 |
+
with open(self.human_dict, "r") as f:
|
111 |
+
human_dict = f.read().splitlines()
|
112 |
+
human_dict = dict(line.split(maxsplit=1) for line in human_dict)
|
113 |
+
|
114 |
+
self.human_labels = [human_dict[s] for s in self.synsets]
|
115 |
+
|
116 |
+
labels = {
|
117 |
+
"relpath": np.array(self.relpaths),
|
118 |
+
"synsets": np.array(self.synsets),
|
119 |
+
"class_label": np.array(self.class_labels),
|
120 |
+
"human_label": np.array(self.human_labels),
|
121 |
+
}
|
122 |
+
|
123 |
+
if self.process_images:
|
124 |
+
self.size = retrieve(self.config, "size", default=256)
|
125 |
+
self.data = ImagePaths(self.abspaths,
|
126 |
+
labels=labels,
|
127 |
+
size=self.size,
|
128 |
+
random_crop=self.random_crop,
|
129 |
+
)
|
130 |
+
else:
|
131 |
+
self.data = self.abspaths
|
132 |
+
|
133 |
+
|
134 |
+
class ImageNetTrain(ImageNetBase):
|
135 |
+
NAME = "ILSVRC2012_train"
|
136 |
+
URL = "http://www.image-net.org/challenges/LSVRC/2012/"
|
137 |
+
AT_HASH = "a306397ccf9c2ead27155983c254227c0fd938e2"
|
138 |
+
FILES = [
|
139 |
+
"ILSVRC2012_img_train.tar",
|
140 |
+
]
|
141 |
+
SIZES = [
|
142 |
+
147897477120,
|
143 |
+
]
|
144 |
+
|
145 |
+
def __init__(self, process_images=True, data_root=None, **kwargs):
|
146 |
+
self.process_images = process_images
|
147 |
+
self.data_root = data_root
|
148 |
+
super().__init__(**kwargs)
|
149 |
+
|
150 |
+
def _prepare(self):
|
151 |
+
if self.data_root:
|
152 |
+
self.root = os.path.join(self.data_root, self.NAME)
|
153 |
+
else:
|
154 |
+
cachedir = os.environ.get("XDG_CACHE_HOME", os.path.expanduser("~/.cache"))
|
155 |
+
self.root = os.path.join(cachedir, "autoencoders/data", self.NAME)
|
156 |
+
|
157 |
+
self.datadir = os.path.join(self.root, "data")
|
158 |
+
self.txt_filelist = os.path.join(self.root, "filelist.txt")
|
159 |
+
self.expected_length = 1281167
|
160 |
+
self.random_crop = retrieve(self.config, "ImageNetTrain/random_crop",
|
161 |
+
default=True)
|
162 |
+
if not tdu.is_prepared(self.root):
|
163 |
+
# prep
|
164 |
+
print("Preparing dataset {} in {}".format(self.NAME, self.root))
|
165 |
+
|
166 |
+
datadir = self.datadir
|
167 |
+
if not os.path.exists(datadir):
|
168 |
+
path = os.path.join(self.root, self.FILES[0])
|
169 |
+
if not os.path.exists(path) or not os.path.getsize(path)==self.SIZES[0]:
|
170 |
+
import academictorrents as at
|
171 |
+
atpath = at.get(self.AT_HASH, datastore=self.root)
|
172 |
+
assert atpath == path
|
173 |
+
|
174 |
+
print("Extracting {} to {}".format(path, datadir))
|
175 |
+
os.makedirs(datadir, exist_ok=True)
|
176 |
+
with tarfile.open(path, "r:") as tar:
|
177 |
+
tar.extractall(path=datadir)
|
178 |
+
|
179 |
+
print("Extracting sub-tars.")
|
180 |
+
subpaths = sorted(glob.glob(os.path.join(datadir, "*.tar")))
|
181 |
+
for subpath in tqdm(subpaths):
|
182 |
+
subdir = subpath[:-len(".tar")]
|
183 |
+
os.makedirs(subdir, exist_ok=True)
|
184 |
+
with tarfile.open(subpath, "r:") as tar:
|
185 |
+
tar.extractall(path=subdir)
|
186 |
+
|
187 |
+
filelist = glob.glob(os.path.join(datadir, "**", "*.JPEG"))
|
188 |
+
filelist = [os.path.relpath(p, start=datadir) for p in filelist]
|
189 |
+
filelist = sorted(filelist)
|
190 |
+
filelist = "\n".join(filelist)+"\n"
|
191 |
+
with open(self.txt_filelist, "w") as f:
|
192 |
+
f.write(filelist)
|
193 |
+
|
194 |
+
tdu.mark_prepared(self.root)
|
195 |
+
|
196 |
+
|
197 |
+
class ImageNetValidation(ImageNetBase):
|
198 |
+
NAME = "ILSVRC2012_validation"
|
199 |
+
URL = "http://www.image-net.org/challenges/LSVRC/2012/"
|
200 |
+
AT_HASH = "5d6d0df7ed81efd49ca99ea4737e0ae5e3a5f2e5"
|
201 |
+
VS_URL = "https://heibox.uni-heidelberg.de/f/3e0f6e9c624e45f2bd73/?dl=1"
|
202 |
+
FILES = [
|
203 |
+
"ILSVRC2012_img_val.tar",
|
204 |
+
"validation_synset.txt",
|
205 |
+
]
|
206 |
+
SIZES = [
|
207 |
+
6744924160,
|
208 |
+
1950000,
|
209 |
+
]
|
210 |
+
|
211 |
+
def __init__(self, process_images=True, data_root=None, **kwargs):
|
212 |
+
self.data_root = data_root
|
213 |
+
self.process_images = process_images
|
214 |
+
super().__init__(**kwargs)
|
215 |
+
|
216 |
+
def _prepare(self):
|
217 |
+
if self.data_root:
|
218 |
+
self.root = os.path.join(self.data_root, self.NAME)
|
219 |
+
else:
|
220 |
+
cachedir = os.environ.get("XDG_CACHE_HOME", os.path.expanduser("~/.cache"))
|
221 |
+
self.root = os.path.join(cachedir, "autoencoders/data", self.NAME)
|
222 |
+
self.datadir = os.path.join(self.root, "data")
|
223 |
+
self.txt_filelist = os.path.join(self.root, "filelist.txt")
|
224 |
+
self.expected_length = 50000
|
225 |
+
self.random_crop = retrieve(self.config, "ImageNetValidation/random_crop",
|
226 |
+
default=False)
|
227 |
+
if not tdu.is_prepared(self.root):
|
228 |
+
# prep
|
229 |
+
print("Preparing dataset {} in {}".format(self.NAME, self.root))
|
230 |
+
|
231 |
+
datadir = self.datadir
|
232 |
+
if not os.path.exists(datadir):
|
233 |
+
path = os.path.join(self.root, self.FILES[0])
|
234 |
+
if not os.path.exists(path) or not os.path.getsize(path)==self.SIZES[0]:
|
235 |
+
import academictorrents as at
|
236 |
+
atpath = at.get(self.AT_HASH, datastore=self.root)
|
237 |
+
assert atpath == path
|
238 |
+
|
239 |
+
print("Extracting {} to {}".format(path, datadir))
|
240 |
+
os.makedirs(datadir, exist_ok=True)
|
241 |
+
with tarfile.open(path, "r:") as tar:
|
242 |
+
tar.extractall(path=datadir)
|
243 |
+
|
244 |
+
vspath = os.path.join(self.root, self.FILES[1])
|
245 |
+
if not os.path.exists(vspath) or not os.path.getsize(vspath)==self.SIZES[1]:
|
246 |
+
download(self.VS_URL, vspath)
|
247 |
+
|
248 |
+
with open(vspath, "r") as f:
|
249 |
+
synset_dict = f.read().splitlines()
|
250 |
+
synset_dict = dict(line.split() for line in synset_dict)
|
251 |
+
|
252 |
+
print("Reorganizing into synset folders")
|
253 |
+
synsets = np.unique(list(synset_dict.values()))
|
254 |
+
for s in synsets:
|
255 |
+
os.makedirs(os.path.join(datadir, s), exist_ok=True)
|
256 |
+
for k, v in synset_dict.items():
|
257 |
+
src = os.path.join(datadir, k)
|
258 |
+
dst = os.path.join(datadir, v)
|
259 |
+
shutil.move(src, dst)
|
260 |
+
|
261 |
+
filelist = glob.glob(os.path.join(datadir, "**", "*.JPEG"))
|
262 |
+
filelist = [os.path.relpath(p, start=datadir) for p in filelist]
|
263 |
+
filelist = sorted(filelist)
|
264 |
+
filelist = "\n".join(filelist)+"\n"
|
265 |
+
with open(self.txt_filelist, "w") as f:
|
266 |
+
f.write(filelist)
|
267 |
+
|
268 |
+
tdu.mark_prepared(self.root)
|
269 |
+
|
270 |
+
|
271 |
+
|
272 |
+
class ImageNetSR(Dataset):
|
273 |
+
def __init__(self, size=None,
|
274 |
+
degradation=None, downscale_f=4, min_crop_f=0.5, max_crop_f=1.,
|
275 |
+
random_crop=True):
|
276 |
+
"""
|
277 |
+
Imagenet Superresolution Dataloader
|
278 |
+
Performs following ops in order:
|
279 |
+
1. crops a crop of size s from image either as random or center crop
|
280 |
+
2. resizes crop to size with cv2.area_interpolation
|
281 |
+
3. degrades resized crop with degradation_fn
|
282 |
+
|
283 |
+
:param size: resizing to size after cropping
|
284 |
+
:param degradation: degradation_fn, e.g. cv_bicubic or bsrgan_light
|
285 |
+
:param downscale_f: Low Resolution Downsample factor
|
286 |
+
:param min_crop_f: determines crop size s,
|
287 |
+
where s = c * min_img_side_len with c sampled from interval (min_crop_f, max_crop_f)
|
288 |
+
:param max_crop_f: ""
|
289 |
+
:param data_root:
|
290 |
+
:param random_crop:
|
291 |
+
"""
|
292 |
+
self.base = self.get_base()
|
293 |
+
assert size
|
294 |
+
assert (size / downscale_f).is_integer()
|
295 |
+
self.size = size
|
296 |
+
self.LR_size = int(size / downscale_f)
|
297 |
+
self.min_crop_f = min_crop_f
|
298 |
+
self.max_crop_f = max_crop_f
|
299 |
+
assert(max_crop_f <= 1.)
|
300 |
+
self.center_crop = not random_crop
|
301 |
+
|
302 |
+
self.image_rescaler = albumentations.SmallestMaxSize(max_size=size, interpolation=cv2.INTER_AREA)
|
303 |
+
|
304 |
+
self.pil_interpolation = False # gets reset later if incase interp_op is from pillow
|
305 |
+
|
306 |
+
if degradation == "bsrgan":
|
307 |
+
self.degradation_process = partial(degradation_fn_bsr, sf=downscale_f)
|
308 |
+
|
309 |
+
elif degradation == "bsrgan_light":
|
310 |
+
self.degradation_process = partial(degradation_fn_bsr_light, sf=downscale_f)
|
311 |
+
|
312 |
+
else:
|
313 |
+
interpolation_fn = {
|
314 |
+
"cv_nearest": cv2.INTER_NEAREST,
|
315 |
+
"cv_bilinear": cv2.INTER_LINEAR,
|
316 |
+
"cv_bicubic": cv2.INTER_CUBIC,
|
317 |
+
"cv_area": cv2.INTER_AREA,
|
318 |
+
"cv_lanczos": cv2.INTER_LANCZOS4,
|
319 |
+
"pil_nearest": PIL.Image.NEAREST,
|
320 |
+
"pil_bilinear": PIL.Image.BILINEAR,
|
321 |
+
"pil_bicubic": PIL.Image.BICUBIC,
|
322 |
+
"pil_box": PIL.Image.BOX,
|
323 |
+
"pil_hamming": PIL.Image.HAMMING,
|
324 |
+
"pil_lanczos": PIL.Image.LANCZOS,
|
325 |
+
}[degradation]
|
326 |
+
|
327 |
+
self.pil_interpolation = degradation.startswith("pil_")
|
328 |
+
|
329 |
+
if self.pil_interpolation:
|
330 |
+
self.degradation_process = partial(TF.resize, size=self.LR_size, interpolation=interpolation_fn)
|
331 |
+
|
332 |
+
else:
|
333 |
+
self.degradation_process = albumentations.SmallestMaxSize(max_size=self.LR_size,
|
334 |
+
interpolation=interpolation_fn)
|
335 |
+
|
336 |
+
def __len__(self):
|
337 |
+
return len(self.base)
|
338 |
+
|
339 |
+
def __getitem__(self, i):
|
340 |
+
example = self.base[i]
|
341 |
+
image = Image.open(example["file_path_"])
|
342 |
+
|
343 |
+
if not image.mode == "RGB":
|
344 |
+
image = image.convert("RGB")
|
345 |
+
|
346 |
+
image = np.array(image).astype(np.uint8)
|
347 |
+
|
348 |
+
min_side_len = min(image.shape[:2])
|
349 |
+
crop_side_len = min_side_len * np.random.uniform(self.min_crop_f, self.max_crop_f, size=None)
|
350 |
+
crop_side_len = int(crop_side_len)
|
351 |
+
|
352 |
+
if self.center_crop:
|
353 |
+
self.cropper = albumentations.CenterCrop(height=crop_side_len, width=crop_side_len)
|
354 |
+
|
355 |
+
else:
|
356 |
+
self.cropper = albumentations.RandomCrop(height=crop_side_len, width=crop_side_len)
|
357 |
+
|
358 |
+
image = self.cropper(image=image)["image"]
|
359 |
+
image = self.image_rescaler(image=image)["image"]
|
360 |
+
|
361 |
+
if self.pil_interpolation:
|
362 |
+
image_pil = PIL.Image.fromarray(image)
|
363 |
+
LR_image = self.degradation_process(image_pil)
|
364 |
+
LR_image = np.array(LR_image).astype(np.uint8)
|
365 |
+
|
366 |
+
else:
|
367 |
+
LR_image = self.degradation_process(image=image)["image"]
|
368 |
+
|
369 |
+
example["image"] = (image/127.5 - 1.0).astype(np.float32)
|
370 |
+
example["LR_image"] = (LR_image/127.5 - 1.0).astype(np.float32)
|
371 |
+
|
372 |
+
return example
|
373 |
+
|
374 |
+
|
375 |
+
class ImageNetSRTrain(ImageNetSR):
|
376 |
+
def __init__(self, **kwargs):
|
377 |
+
super().__init__(**kwargs)
|
378 |
+
|
379 |
+
def get_base(self):
|
380 |
+
with open("data/imagenet_train_hr_indices.p", "rb") as f:
|
381 |
+
indices = pickle.load(f)
|
382 |
+
dset = ImageNetTrain(process_images=False,)
|
383 |
+
return Subset(dset, indices)
|
384 |
+
|
385 |
+
|
386 |
+
class ImageNetSRValidation(ImageNetSR):
|
387 |
+
def __init__(self, **kwargs):
|
388 |
+
super().__init__(**kwargs)
|
389 |
+
|
390 |
+
def get_base(self):
|
391 |
+
with open("data/imagenet_val_hr_indices.p", "rb") as f:
|
392 |
+
indices = pickle.load(f)
|
393 |
+
dset = ImageNetValidation(process_images=False,)
|
394 |
+
return Subset(dset, indices)
|
ldm/data/lsun.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
import PIL
|
4 |
+
from PIL import Image
|
5 |
+
from torch.utils.data import Dataset
|
6 |
+
from torchvision import transforms
|
7 |
+
|
8 |
+
|
9 |
+
class LSUNBase(Dataset):
|
10 |
+
def __init__(self,
|
11 |
+
txt_file,
|
12 |
+
data_root,
|
13 |
+
size=None,
|
14 |
+
interpolation="bicubic",
|
15 |
+
flip_p=0.5
|
16 |
+
):
|
17 |
+
self.data_paths = txt_file
|
18 |
+
self.data_root = data_root
|
19 |
+
with open(self.data_paths, "r") as f:
|
20 |
+
self.image_paths = f.read().splitlines()
|
21 |
+
self._length = len(self.image_paths)
|
22 |
+
self.labels = {
|
23 |
+
"relative_file_path_": [l for l in self.image_paths],
|
24 |
+
"file_path_": [os.path.join(self.data_root, l)
|
25 |
+
for l in self.image_paths],
|
26 |
+
}
|
27 |
+
|
28 |
+
self.size = size
|
29 |
+
self.interpolation = {"linear": PIL.Image.LINEAR,
|
30 |
+
"bilinear": PIL.Image.BILINEAR,
|
31 |
+
"bicubic": PIL.Image.BICUBIC,
|
32 |
+
"lanczos": PIL.Image.LANCZOS,
|
33 |
+
}[interpolation]
|
34 |
+
self.flip = transforms.RandomHorizontalFlip(p=flip_p)
|
35 |
+
|
36 |
+
def __len__(self):
|
37 |
+
return self._length
|
38 |
+
|
39 |
+
def __getitem__(self, i):
|
40 |
+
example = dict((k, self.labels[k][i]) for k in self.labels)
|
41 |
+
image = Image.open(example["file_path_"])
|
42 |
+
if not image.mode == "RGB":
|
43 |
+
image = image.convert("RGB")
|
44 |
+
|
45 |
+
# default to score-sde preprocessing
|
46 |
+
img = np.array(image).astype(np.uint8)
|
47 |
+
crop = min(img.shape[0], img.shape[1])
|
48 |
+
h, w, = img.shape[0], img.shape[1]
|
49 |
+
img = img[(h - crop) // 2:(h + crop) // 2,
|
50 |
+
(w - crop) // 2:(w + crop) // 2]
|
51 |
+
|
52 |
+
image = Image.fromarray(img)
|
53 |
+
if self.size is not None:
|
54 |
+
image = image.resize((self.size, self.size), resample=self.interpolation)
|
55 |
+
|
56 |
+
image = self.flip(image)
|
57 |
+
image = np.array(image).astype(np.uint8)
|
58 |
+
example["image"] = (image / 127.5 - 1.0).astype(np.float32)
|
59 |
+
return example
|
60 |
+
|
61 |
+
|
62 |
+
class LSUNChurchesTrain(LSUNBase):
|
63 |
+
def __init__(self, **kwargs):
|
64 |
+
super().__init__(txt_file="data/lsun/church_outdoor_train.txt", data_root="data/lsun/churches", **kwargs)
|
65 |
+
|
66 |
+
|
67 |
+
class LSUNChurchesValidation(LSUNBase):
|
68 |
+
def __init__(self, flip_p=0., **kwargs):
|
69 |
+
super().__init__(txt_file="data/lsun/church_outdoor_val.txt", data_root="data/lsun/churches",
|
70 |
+
flip_p=flip_p, **kwargs)
|
71 |
+
|
72 |
+
|
73 |
+
class LSUNBedroomsTrain(LSUNBase):
|
74 |
+
def __init__(self, **kwargs):
|
75 |
+
super().__init__(txt_file="data/lsun/bedrooms_train.txt", data_root="data/lsun/bedrooms", **kwargs)
|
76 |
+
|
77 |
+
|
78 |
+
class LSUNBedroomsValidation(LSUNBase):
|
79 |
+
def __init__(self, flip_p=0.0, **kwargs):
|
80 |
+
super().__init__(txt_file="data/lsun/bedrooms_val.txt", data_root="data/lsun/bedrooms",
|
81 |
+
flip_p=flip_p, **kwargs)
|
82 |
+
|
83 |
+
|
84 |
+
class LSUNCatsTrain(LSUNBase):
|
85 |
+
def __init__(self, **kwargs):
|
86 |
+
super().__init__(txt_file="data/lsun/cat_train.txt", data_root="data/lsun/cats", **kwargs)
|
87 |
+
|
88 |
+
|
89 |
+
class LSUNCatsValidation(LSUNBase):
|
90 |
+
def __init__(self, flip_p=0., **kwargs):
|
91 |
+
super().__init__(txt_file="data/lsun/cat_val.txt", data_root="data/lsun/cats",
|
92 |
+
flip_p=flip_p, **kwargs)
|
ldm/lr_scheduler.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
|
4 |
+
class LambdaWarmUpCosineScheduler:
|
5 |
+
"""
|
6 |
+
note: use with a base_lr of 1.0
|
7 |
+
"""
|
8 |
+
def __init__(self, warm_up_steps, lr_min, lr_max, lr_start, max_decay_steps, verbosity_interval=0):
|
9 |
+
self.lr_warm_up_steps = warm_up_steps
|
10 |
+
self.lr_start = lr_start
|
11 |
+
self.lr_min = lr_min
|
12 |
+
self.lr_max = lr_max
|
13 |
+
self.lr_max_decay_steps = max_decay_steps
|
14 |
+
self.last_lr = 0.
|
15 |
+
self.verbosity_interval = verbosity_interval
|
16 |
+
|
17 |
+
def schedule(self, n, **kwargs):
|
18 |
+
if self.verbosity_interval > 0:
|
19 |
+
if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_lr}")
|
20 |
+
if n < self.lr_warm_up_steps:
|
21 |
+
lr = (self.lr_max - self.lr_start) / self.lr_warm_up_steps * n + self.lr_start
|
22 |
+
self.last_lr = lr
|
23 |
+
return lr
|
24 |
+
else:
|
25 |
+
t = (n - self.lr_warm_up_steps) / (self.lr_max_decay_steps - self.lr_warm_up_steps)
|
26 |
+
t = min(t, 1.0)
|
27 |
+
lr = self.lr_min + 0.5 * (self.lr_max - self.lr_min) * (
|
28 |
+
1 + np.cos(t * np.pi))
|
29 |
+
self.last_lr = lr
|
30 |
+
return lr
|
31 |
+
|
32 |
+
def __call__(self, n, **kwargs):
|
33 |
+
return self.schedule(n,**kwargs)
|
34 |
+
|
35 |
+
|
36 |
+
class LambdaWarmUpCosineScheduler2:
|
37 |
+
"""
|
38 |
+
supports repeated iterations, configurable via lists
|
39 |
+
note: use with a base_lr of 1.0.
|
40 |
+
"""
|
41 |
+
def __init__(self, warm_up_steps, f_min, f_max, f_start, cycle_lengths, verbosity_interval=0):
|
42 |
+
assert len(warm_up_steps) == len(f_min) == len(f_max) == len(f_start) == len(cycle_lengths)
|
43 |
+
self.lr_warm_up_steps = warm_up_steps
|
44 |
+
self.f_start = f_start
|
45 |
+
self.f_min = f_min
|
46 |
+
self.f_max = f_max
|
47 |
+
self.cycle_lengths = cycle_lengths
|
48 |
+
self.cum_cycles = np.cumsum([0] + list(self.cycle_lengths))
|
49 |
+
self.last_f = 0.
|
50 |
+
self.verbosity_interval = verbosity_interval
|
51 |
+
|
52 |
+
def find_in_interval(self, n):
|
53 |
+
interval = 0
|
54 |
+
for cl in self.cum_cycles[1:]:
|
55 |
+
if n <= cl:
|
56 |
+
return interval
|
57 |
+
interval += 1
|
58 |
+
|
59 |
+
def schedule(self, n, **kwargs):
|
60 |
+
cycle = self.find_in_interval(n)
|
61 |
+
n = n - self.cum_cycles[cycle]
|
62 |
+
if self.verbosity_interval > 0:
|
63 |
+
if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, "
|
64 |
+
f"current cycle {cycle}")
|
65 |
+
if n < self.lr_warm_up_steps[cycle]:
|
66 |
+
f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
|
67 |
+
self.last_f = f
|
68 |
+
return f
|
69 |
+
else:
|
70 |
+
t = (n - self.lr_warm_up_steps[cycle]) / (self.cycle_lengths[cycle] - self.lr_warm_up_steps[cycle])
|
71 |
+
t = min(t, 1.0)
|
72 |
+
f = self.f_min[cycle] + 0.5 * (self.f_max[cycle] - self.f_min[cycle]) * (
|
73 |
+
1 + np.cos(t * np.pi))
|
74 |
+
self.last_f = f
|
75 |
+
return f
|
76 |
+
|
77 |
+
def __call__(self, n, **kwargs):
|
78 |
+
return self.schedule(n, **kwargs)
|
79 |
+
|
80 |
+
|
81 |
+
class LambdaLinearScheduler(LambdaWarmUpCosineScheduler2):
|
82 |
+
|
83 |
+
def schedule(self, n, **kwargs):
|
84 |
+
cycle = self.find_in_interval(n)
|
85 |
+
n = n - self.cum_cycles[cycle]
|
86 |
+
if self.verbosity_interval > 0:
|
87 |
+
if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, "
|
88 |
+
f"current cycle {cycle}")
|
89 |
+
|
90 |
+
if n < self.lr_warm_up_steps[cycle]:
|
91 |
+
f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
|
92 |
+
self.last_f = f
|
93 |
+
return f
|
94 |
+
else:
|
95 |
+
f = self.f_min[cycle] + (self.f_max[cycle] - self.f_min[cycle]) * (self.cycle_lengths[cycle] - n) / (self.cycle_lengths[cycle])
|
96 |
+
self.last_f = f
|
97 |
+
return f
|
98 |
+
|
ldm/models/autoencoder.py
ADDED
@@ -0,0 +1,443 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import pytorch_lightning as pl
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from contextlib import contextmanager
|
5 |
+
|
6 |
+
from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer
|
7 |
+
|
8 |
+
from ldm.modules.diffusionmodules.model import Encoder, Decoder
|
9 |
+
from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
|
10 |
+
|
11 |
+
from ldm.util import instantiate_from_config
|
12 |
+
|
13 |
+
|
14 |
+
class VQModel(pl.LightningModule):
|
15 |
+
def __init__(self,
|
16 |
+
ddconfig,
|
17 |
+
lossconfig,
|
18 |
+
n_embed,
|
19 |
+
embed_dim,
|
20 |
+
ckpt_path=None,
|
21 |
+
ignore_keys=[],
|
22 |
+
image_key="image",
|
23 |
+
colorize_nlabels=None,
|
24 |
+
monitor=None,
|
25 |
+
batch_resize_range=None,
|
26 |
+
scheduler_config=None,
|
27 |
+
lr_g_factor=1.0,
|
28 |
+
remap=None,
|
29 |
+
sane_index_shape=False, # tell vector quantizer to return indices as bhw
|
30 |
+
use_ema=False
|
31 |
+
):
|
32 |
+
super().__init__()
|
33 |
+
self.embed_dim = embed_dim
|
34 |
+
self.n_embed = n_embed
|
35 |
+
self.image_key = image_key
|
36 |
+
self.encoder = Encoder(**ddconfig)
|
37 |
+
self.decoder = Decoder(**ddconfig)
|
38 |
+
self.loss = instantiate_from_config(lossconfig)
|
39 |
+
self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25,
|
40 |
+
remap=remap,
|
41 |
+
sane_index_shape=sane_index_shape)
|
42 |
+
self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1)
|
43 |
+
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
44 |
+
if colorize_nlabels is not None:
|
45 |
+
assert type(colorize_nlabels)==int
|
46 |
+
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
|
47 |
+
if monitor is not None:
|
48 |
+
self.monitor = monitor
|
49 |
+
self.batch_resize_range = batch_resize_range
|
50 |
+
if self.batch_resize_range is not None:
|
51 |
+
print(f"{self.__class__.__name__}: Using per-batch resizing in range {batch_resize_range}.")
|
52 |
+
|
53 |
+
self.use_ema = use_ema
|
54 |
+
if self.use_ema:
|
55 |
+
self.model_ema = LitEma(self)
|
56 |
+
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
|
57 |
+
|
58 |
+
if ckpt_path is not None:
|
59 |
+
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
60 |
+
self.scheduler_config = scheduler_config
|
61 |
+
self.lr_g_factor = lr_g_factor
|
62 |
+
|
63 |
+
@contextmanager
|
64 |
+
def ema_scope(self, context=None):
|
65 |
+
if self.use_ema:
|
66 |
+
self.model_ema.store(self.parameters())
|
67 |
+
self.model_ema.copy_to(self)
|
68 |
+
if context is not None:
|
69 |
+
print(f"{context}: Switched to EMA weights")
|
70 |
+
try:
|
71 |
+
yield None
|
72 |
+
finally:
|
73 |
+
if self.use_ema:
|
74 |
+
self.model_ema.restore(self.parameters())
|
75 |
+
if context is not None:
|
76 |
+
print(f"{context}: Restored training weights")
|
77 |
+
|
78 |
+
def init_from_ckpt(self, path, ignore_keys=list()):
|
79 |
+
sd = torch.load(path, map_location="cpu")["state_dict"]
|
80 |
+
keys = list(sd.keys())
|
81 |
+
for k in keys:
|
82 |
+
for ik in ignore_keys:
|
83 |
+
if k.startswith(ik):
|
84 |
+
print("Deleting key {} from state_dict.".format(k))
|
85 |
+
del sd[k]
|
86 |
+
missing, unexpected = self.load_state_dict(sd, strict=False)
|
87 |
+
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
88 |
+
if len(missing) > 0:
|
89 |
+
print(f"Missing Keys: {missing}")
|
90 |
+
print(f"Unexpected Keys: {unexpected}")
|
91 |
+
|
92 |
+
def on_train_batch_end(self, *args, **kwargs):
|
93 |
+
if self.use_ema:
|
94 |
+
self.model_ema(self)
|
95 |
+
|
96 |
+
def encode(self, x):
|
97 |
+
h = self.encoder(x)
|
98 |
+
h = self.quant_conv(h)
|
99 |
+
quant, emb_loss, info = self.quantize(h)
|
100 |
+
return quant, emb_loss, info
|
101 |
+
|
102 |
+
def encode_to_prequant(self, x):
|
103 |
+
h = self.encoder(x)
|
104 |
+
h = self.quant_conv(h)
|
105 |
+
return h
|
106 |
+
|
107 |
+
def decode(self, quant):
|
108 |
+
quant = self.post_quant_conv(quant)
|
109 |
+
dec = self.decoder(quant)
|
110 |
+
return dec
|
111 |
+
|
112 |
+
def decode_code(self, code_b):
|
113 |
+
quant_b = self.quantize.embed_code(code_b)
|
114 |
+
dec = self.decode(quant_b)
|
115 |
+
return dec
|
116 |
+
|
117 |
+
def forward(self, input, return_pred_indices=False):
|
118 |
+
quant, diff, (_,_,ind) = self.encode(input)
|
119 |
+
dec = self.decode(quant)
|
120 |
+
if return_pred_indices:
|
121 |
+
return dec, diff, ind
|
122 |
+
return dec, diff
|
123 |
+
|
124 |
+
def get_input(self, batch, k):
|
125 |
+
x = batch[k]
|
126 |
+
if len(x.shape) == 3:
|
127 |
+
x = x[..., None]
|
128 |
+
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
|
129 |
+
if self.batch_resize_range is not None:
|
130 |
+
lower_size = self.batch_resize_range[0]
|
131 |
+
upper_size = self.batch_resize_range[1]
|
132 |
+
if self.global_step <= 4:
|
133 |
+
# do the first few batches with max size to avoid later oom
|
134 |
+
new_resize = upper_size
|
135 |
+
else:
|
136 |
+
new_resize = np.random.choice(np.arange(lower_size, upper_size+16, 16))
|
137 |
+
if new_resize != x.shape[2]:
|
138 |
+
x = F.interpolate(x, size=new_resize, mode="bicubic")
|
139 |
+
x = x.detach()
|
140 |
+
return x
|
141 |
+
|
142 |
+
def training_step(self, batch, batch_idx, optimizer_idx):
|
143 |
+
# https://github.com/pytorch/pytorch/issues/37142
|
144 |
+
# try not to fool the heuristics
|
145 |
+
x = self.get_input(batch, self.image_key)
|
146 |
+
xrec, qloss, ind = self(x, return_pred_indices=True)
|
147 |
+
|
148 |
+
if optimizer_idx == 0:
|
149 |
+
# autoencode
|
150 |
+
aeloss, log_dict_ae = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
|
151 |
+
last_layer=self.get_last_layer(), split="train",
|
152 |
+
predicted_indices=ind)
|
153 |
+
|
154 |
+
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True)
|
155 |
+
return aeloss
|
156 |
+
|
157 |
+
if optimizer_idx == 1:
|
158 |
+
# discriminator
|
159 |
+
discloss, log_dict_disc = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
|
160 |
+
last_layer=self.get_last_layer(), split="train")
|
161 |
+
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True)
|
162 |
+
return discloss
|
163 |
+
|
164 |
+
def validation_step(self, batch, batch_idx):
|
165 |
+
log_dict = self._validation_step(batch, batch_idx)
|
166 |
+
with self.ema_scope():
|
167 |
+
log_dict_ema = self._validation_step(batch, batch_idx, suffix="_ema")
|
168 |
+
return log_dict
|
169 |
+
|
170 |
+
def _validation_step(self, batch, batch_idx, suffix=""):
|
171 |
+
x = self.get_input(batch, self.image_key)
|
172 |
+
xrec, qloss, ind = self(x, return_pred_indices=True)
|
173 |
+
aeloss, log_dict_ae = self.loss(qloss, x, xrec, 0,
|
174 |
+
self.global_step,
|
175 |
+
last_layer=self.get_last_layer(),
|
176 |
+
split="val"+suffix,
|
177 |
+
predicted_indices=ind
|
178 |
+
)
|
179 |
+
|
180 |
+
discloss, log_dict_disc = self.loss(qloss, x, xrec, 1,
|
181 |
+
self.global_step,
|
182 |
+
last_layer=self.get_last_layer(),
|
183 |
+
split="val"+suffix,
|
184 |
+
predicted_indices=ind
|
185 |
+
)
|
186 |
+
rec_loss = log_dict_ae[f"val{suffix}/rec_loss"]
|
187 |
+
self.log(f"val{suffix}/rec_loss", rec_loss,
|
188 |
+
prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
|
189 |
+
self.log(f"val{suffix}/aeloss", aeloss,
|
190 |
+
prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
|
191 |
+
if version.parse(pl.__version__) >= version.parse('1.4.0'):
|
192 |
+
del log_dict_ae[f"val{suffix}/rec_loss"]
|
193 |
+
self.log_dict(log_dict_ae)
|
194 |
+
self.log_dict(log_dict_disc)
|
195 |
+
return self.log_dict
|
196 |
+
|
197 |
+
def configure_optimizers(self):
|
198 |
+
lr_d = self.learning_rate
|
199 |
+
lr_g = self.lr_g_factor*self.learning_rate
|
200 |
+
print("lr_d", lr_d)
|
201 |
+
print("lr_g", lr_g)
|
202 |
+
opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
|
203 |
+
list(self.decoder.parameters())+
|
204 |
+
list(self.quantize.parameters())+
|
205 |
+
list(self.quant_conv.parameters())+
|
206 |
+
list(self.post_quant_conv.parameters()),
|
207 |
+
lr=lr_g, betas=(0.5, 0.9))
|
208 |
+
opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
|
209 |
+
lr=lr_d, betas=(0.5, 0.9))
|
210 |
+
|
211 |
+
if self.scheduler_config is not None:
|
212 |
+
scheduler = instantiate_from_config(self.scheduler_config)
|
213 |
+
|
214 |
+
print("Setting up LambdaLR scheduler...")
|
215 |
+
scheduler = [
|
216 |
+
{
|
217 |
+
'scheduler': LambdaLR(opt_ae, lr_lambda=scheduler.schedule),
|
218 |
+
'interval': 'step',
|
219 |
+
'frequency': 1
|
220 |
+
},
|
221 |
+
{
|
222 |
+
'scheduler': LambdaLR(opt_disc, lr_lambda=scheduler.schedule),
|
223 |
+
'interval': 'step',
|
224 |
+
'frequency': 1
|
225 |
+
},
|
226 |
+
]
|
227 |
+
return [opt_ae, opt_disc], scheduler
|
228 |
+
return [opt_ae, opt_disc], []
|
229 |
+
|
230 |
+
def get_last_layer(self):
|
231 |
+
return self.decoder.conv_out.weight
|
232 |
+
|
233 |
+
def log_images(self, batch, only_inputs=False, plot_ema=False, **kwargs):
|
234 |
+
log = dict()
|
235 |
+
x = self.get_input(batch, self.image_key)
|
236 |
+
x = x.to(self.device)
|
237 |
+
if only_inputs:
|
238 |
+
log["inputs"] = x
|
239 |
+
return log
|
240 |
+
xrec, _ = self(x)
|
241 |
+
if x.shape[1] > 3:
|
242 |
+
# colorize with random projection
|
243 |
+
assert xrec.shape[1] > 3
|
244 |
+
x = self.to_rgb(x)
|
245 |
+
xrec = self.to_rgb(xrec)
|
246 |
+
log["inputs"] = x
|
247 |
+
log["reconstructions"] = xrec
|
248 |
+
if plot_ema:
|
249 |
+
with self.ema_scope():
|
250 |
+
xrec_ema, _ = self(x)
|
251 |
+
if x.shape[1] > 3: xrec_ema = self.to_rgb(xrec_ema)
|
252 |
+
log["reconstructions_ema"] = xrec_ema
|
253 |
+
return log
|
254 |
+
|
255 |
+
def to_rgb(self, x):
|
256 |
+
assert self.image_key == "segmentation"
|
257 |
+
if not hasattr(self, "colorize"):
|
258 |
+
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
|
259 |
+
x = F.conv2d(x, weight=self.colorize)
|
260 |
+
x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
|
261 |
+
return x
|
262 |
+
|
263 |
+
|
264 |
+
class VQModelInterface(VQModel):
|
265 |
+
def __init__(self, embed_dim, *args, **kwargs):
|
266 |
+
super().__init__(embed_dim=embed_dim, *args, **kwargs)
|
267 |
+
self.embed_dim = embed_dim
|
268 |
+
|
269 |
+
def encode(self, x):
|
270 |
+
h = self.encoder(x)
|
271 |
+
h = self.quant_conv(h)
|
272 |
+
return h
|
273 |
+
|
274 |
+
def decode(self, h, force_not_quantize=False):
|
275 |
+
# also go through quantization layer
|
276 |
+
if not force_not_quantize:
|
277 |
+
quant, emb_loss, info = self.quantize(h)
|
278 |
+
else:
|
279 |
+
quant = h
|
280 |
+
quant = self.post_quant_conv(quant)
|
281 |
+
dec = self.decoder(quant)
|
282 |
+
return dec
|
283 |
+
|
284 |
+
|
285 |
+
class AutoencoderKL(pl.LightningModule):
|
286 |
+
def __init__(self,
|
287 |
+
ddconfig,
|
288 |
+
lossconfig,
|
289 |
+
embed_dim,
|
290 |
+
ckpt_path=None,
|
291 |
+
ignore_keys=[],
|
292 |
+
image_key="image",
|
293 |
+
colorize_nlabels=None,
|
294 |
+
monitor=None,
|
295 |
+
):
|
296 |
+
super().__init__()
|
297 |
+
self.image_key = image_key
|
298 |
+
self.encoder = Encoder(**ddconfig)
|
299 |
+
self.decoder = Decoder(**ddconfig)
|
300 |
+
self.loss = instantiate_from_config(lossconfig)
|
301 |
+
assert ddconfig["double_z"]
|
302 |
+
self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
|
303 |
+
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
304 |
+
self.embed_dim = embed_dim
|
305 |
+
if colorize_nlabels is not None:
|
306 |
+
assert type(colorize_nlabels)==int
|
307 |
+
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
|
308 |
+
if monitor is not None:
|
309 |
+
self.monitor = monitor
|
310 |
+
if ckpt_path is not None:
|
311 |
+
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
312 |
+
|
313 |
+
def init_from_ckpt(self, path, ignore_keys=list()):
|
314 |
+
sd = torch.load(path, map_location="cpu")["state_dict"]
|
315 |
+
keys = list(sd.keys())
|
316 |
+
for k in keys:
|
317 |
+
for ik in ignore_keys:
|
318 |
+
if k.startswith(ik):
|
319 |
+
print("Deleting key {} from state_dict.".format(k))
|
320 |
+
del sd[k]
|
321 |
+
self.load_state_dict(sd, strict=False)
|
322 |
+
print(f"Restored from {path}")
|
323 |
+
|
324 |
+
def encode(self, x):
|
325 |
+
h = self.encoder(x)
|
326 |
+
moments = self.quant_conv(h)
|
327 |
+
posterior = DiagonalGaussianDistribution(moments)
|
328 |
+
return posterior
|
329 |
+
|
330 |
+
def decode(self, z):
|
331 |
+
z = self.post_quant_conv(z)
|
332 |
+
dec = self.decoder(z)
|
333 |
+
return dec
|
334 |
+
|
335 |
+
def forward(self, input, sample_posterior=True):
|
336 |
+
posterior = self.encode(input)
|
337 |
+
if sample_posterior:
|
338 |
+
z = posterior.sample()
|
339 |
+
else:
|
340 |
+
z = posterior.mode()
|
341 |
+
dec = self.decode(z)
|
342 |
+
return dec, posterior
|
343 |
+
|
344 |
+
def get_input(self, batch, k):
|
345 |
+
x = batch[k]
|
346 |
+
if len(x.shape) == 3:
|
347 |
+
x = x[..., None]
|
348 |
+
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
|
349 |
+
return x
|
350 |
+
|
351 |
+
def training_step(self, batch, batch_idx, optimizer_idx):
|
352 |
+
inputs = self.get_input(batch, self.image_key)
|
353 |
+
reconstructions, posterior = self(inputs)
|
354 |
+
|
355 |
+
if optimizer_idx == 0:
|
356 |
+
# train encoder+decoder+logvar
|
357 |
+
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
|
358 |
+
last_layer=self.get_last_layer(), split="train")
|
359 |
+
self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
360 |
+
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
|
361 |
+
return aeloss
|
362 |
+
|
363 |
+
if optimizer_idx == 1:
|
364 |
+
# train the discriminator
|
365 |
+
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
|
366 |
+
last_layer=self.get_last_layer(), split="train")
|
367 |
+
|
368 |
+
self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
369 |
+
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
|
370 |
+
return discloss
|
371 |
+
|
372 |
+
def validation_step(self, batch, batch_idx):
|
373 |
+
inputs = self.get_input(batch, self.image_key)
|
374 |
+
reconstructions, posterior = self(inputs)
|
375 |
+
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step,
|
376 |
+
last_layer=self.get_last_layer(), split="val")
|
377 |
+
|
378 |
+
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step,
|
379 |
+
last_layer=self.get_last_layer(), split="val")
|
380 |
+
|
381 |
+
self.log("val/rec_loss", log_dict_ae["val/rec_loss"])
|
382 |
+
self.log_dict(log_dict_ae)
|
383 |
+
self.log_dict(log_dict_disc)
|
384 |
+
return self.log_dict
|
385 |
+
|
386 |
+
def configure_optimizers(self):
|
387 |
+
lr = self.learning_rate
|
388 |
+
opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
|
389 |
+
list(self.decoder.parameters())+
|
390 |
+
list(self.quant_conv.parameters())+
|
391 |
+
list(self.post_quant_conv.parameters()),
|
392 |
+
lr=lr, betas=(0.5, 0.9))
|
393 |
+
opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
|
394 |
+
lr=lr, betas=(0.5, 0.9))
|
395 |
+
return [opt_ae, opt_disc], []
|
396 |
+
|
397 |
+
def get_last_layer(self):
|
398 |
+
return self.decoder.conv_out.weight
|
399 |
+
|
400 |
+
@torch.no_grad()
|
401 |
+
def log_images(self, batch, only_inputs=False, **kwargs):
|
402 |
+
log = dict()
|
403 |
+
x = self.get_input(batch, self.image_key)
|
404 |
+
x = x.to(self.device)
|
405 |
+
if not only_inputs:
|
406 |
+
xrec, posterior = self(x)
|
407 |
+
if x.shape[1] > 3:
|
408 |
+
# colorize with random projection
|
409 |
+
assert xrec.shape[1] > 3
|
410 |
+
x = self.to_rgb(x)
|
411 |
+
xrec = self.to_rgb(xrec)
|
412 |
+
log["samples"] = self.decode(torch.randn_like(posterior.sample()))
|
413 |
+
log["reconstructions"] = xrec
|
414 |
+
log["inputs"] = x
|
415 |
+
return log
|
416 |
+
|
417 |
+
def to_rgb(self, x):
|
418 |
+
assert self.image_key == "segmentation"
|
419 |
+
if not hasattr(self, "colorize"):
|
420 |
+
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
|
421 |
+
x = F.conv2d(x, weight=self.colorize)
|
422 |
+
x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
|
423 |
+
return x
|
424 |
+
|
425 |
+
|
426 |
+
class IdentityFirstStage(torch.nn.Module):
|
427 |
+
def __init__(self, *args, vq_interface=False, **kwargs):
|
428 |
+
self.vq_interface = vq_interface # TODO: Should be true by default but check to not break older stuff
|
429 |
+
super().__init__()
|
430 |
+
|
431 |
+
def encode(self, x, *args, **kwargs):
|
432 |
+
return x
|
433 |
+
|
434 |
+
def decode(self, x, *args, **kwargs):
|
435 |
+
return x
|
436 |
+
|
437 |
+
def quantize(self, x, *args, **kwargs):
|
438 |
+
if self.vq_interface:
|
439 |
+
return x, None, [None, None, None]
|
440 |
+
return x
|
441 |
+
|
442 |
+
def forward(self, x, *args, **kwargs):
|
443 |
+
return x
|
ldm/models/diffusion/__init__.py
ADDED
File without changes
|
ldm/models/diffusion/classifier.py
ADDED
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import pytorch_lightning as pl
|
4 |
+
from omegaconf import OmegaConf
|
5 |
+
from torch.nn import functional as F
|
6 |
+
from torch.optim import AdamW
|
7 |
+
from torch.optim.lr_scheduler import LambdaLR
|
8 |
+
from copy import deepcopy
|
9 |
+
from einops import rearrange
|
10 |
+
from glob import glob
|
11 |
+
from natsort import natsorted
|
12 |
+
|
13 |
+
from ldm.modules.diffusionmodules.openaimodel import EncoderUNetModel, UNetModel
|
14 |
+
from ldm.util import log_txt_as_img, default, ismap, instantiate_from_config
|
15 |
+
|
16 |
+
__models__ = {
|
17 |
+
'class_label': EncoderUNetModel,
|
18 |
+
'segmentation': UNetModel
|
19 |
+
}
|
20 |
+
|
21 |
+
|
22 |
+
def disabled_train(self, mode=True):
|
23 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
24 |
+
does not change anymore."""
|
25 |
+
return self
|
26 |
+
|
27 |
+
|
28 |
+
class NoisyLatentImageClassifier(pl.LightningModule):
|
29 |
+
|
30 |
+
def __init__(self,
|
31 |
+
diffusion_path,
|
32 |
+
num_classes,
|
33 |
+
ckpt_path=None,
|
34 |
+
pool='attention',
|
35 |
+
label_key=None,
|
36 |
+
diffusion_ckpt_path=None,
|
37 |
+
scheduler_config=None,
|
38 |
+
weight_decay=1.e-2,
|
39 |
+
log_steps=10,
|
40 |
+
monitor='val/loss',
|
41 |
+
*args,
|
42 |
+
**kwargs):
|
43 |
+
super().__init__(*args, **kwargs)
|
44 |
+
self.num_classes = num_classes
|
45 |
+
# get latest config of diffusion model
|
46 |
+
diffusion_config = natsorted(glob(os.path.join(diffusion_path, 'configs', '*-project.yaml')))[-1]
|
47 |
+
self.diffusion_config = OmegaConf.load(diffusion_config).model
|
48 |
+
self.diffusion_config.params.ckpt_path = diffusion_ckpt_path
|
49 |
+
self.load_diffusion()
|
50 |
+
|
51 |
+
self.monitor = monitor
|
52 |
+
self.numd = self.diffusion_model.first_stage_model.encoder.num_resolutions - 1
|
53 |
+
self.log_time_interval = self.diffusion_model.num_timesteps // log_steps
|
54 |
+
self.log_steps = log_steps
|
55 |
+
|
56 |
+
self.label_key = label_key if not hasattr(self.diffusion_model, 'cond_stage_key') \
|
57 |
+
else self.diffusion_model.cond_stage_key
|
58 |
+
|
59 |
+
assert self.label_key is not None, 'label_key neither in diffusion model nor in model.params'
|
60 |
+
|
61 |
+
if self.label_key not in __models__:
|
62 |
+
raise NotImplementedError()
|
63 |
+
|
64 |
+
self.load_classifier(ckpt_path, pool)
|
65 |
+
|
66 |
+
self.scheduler_config = scheduler_config
|
67 |
+
self.use_scheduler = self.scheduler_config is not None
|
68 |
+
self.weight_decay = weight_decay
|
69 |
+
|
70 |
+
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
|
71 |
+
sd = torch.load(path, map_location="cpu")
|
72 |
+
if "state_dict" in list(sd.keys()):
|
73 |
+
sd = sd["state_dict"]
|
74 |
+
keys = list(sd.keys())
|
75 |
+
for k in keys:
|
76 |
+
for ik in ignore_keys:
|
77 |
+
if k.startswith(ik):
|
78 |
+
print("Deleting key {} from state_dict.".format(k))
|
79 |
+
del sd[k]
|
80 |
+
missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
|
81 |
+
sd, strict=False)
|
82 |
+
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
83 |
+
if len(missing) > 0:
|
84 |
+
print(f"Missing Keys: {missing}")
|
85 |
+
if len(unexpected) > 0:
|
86 |
+
print(f"Unexpected Keys: {unexpected}")
|
87 |
+
|
88 |
+
def load_diffusion(self):
|
89 |
+
model = instantiate_from_config(self.diffusion_config)
|
90 |
+
self.diffusion_model = model.eval()
|
91 |
+
self.diffusion_model.train = disabled_train
|
92 |
+
for param in self.diffusion_model.parameters():
|
93 |
+
param.requires_grad = False
|
94 |
+
|
95 |
+
def load_classifier(self, ckpt_path, pool):
|
96 |
+
model_config = deepcopy(self.diffusion_config.params.unet_config.params)
|
97 |
+
model_config.in_channels = self.diffusion_config.params.unet_config.params.out_channels
|
98 |
+
model_config.out_channels = self.num_classes
|
99 |
+
if self.label_key == 'class_label':
|
100 |
+
model_config.pool = pool
|
101 |
+
|
102 |
+
self.model = __models__[self.label_key](**model_config)
|
103 |
+
if ckpt_path is not None:
|
104 |
+
print('#####################################################################')
|
105 |
+
print(f'load from ckpt "{ckpt_path}"')
|
106 |
+
print('#####################################################################')
|
107 |
+
self.init_from_ckpt(ckpt_path)
|
108 |
+
|
109 |
+
@torch.no_grad()
|
110 |
+
def get_x_noisy(self, x, t, noise=None):
|
111 |
+
noise = default(noise, lambda: torch.randn_like(x))
|
112 |
+
continuous_sqrt_alpha_cumprod = None
|
113 |
+
if self.diffusion_model.use_continuous_noise:
|
114 |
+
continuous_sqrt_alpha_cumprod = self.diffusion_model.sample_continuous_noise_level(x.shape[0], t + 1)
|
115 |
+
# todo: make sure t+1 is correct here
|
116 |
+
|
117 |
+
return self.diffusion_model.q_sample(x_start=x, t=t, noise=noise,
|
118 |
+
continuous_sqrt_alpha_cumprod=continuous_sqrt_alpha_cumprod)
|
119 |
+
|
120 |
+
def forward(self, x_noisy, t, *args, **kwargs):
|
121 |
+
return self.model(x_noisy, t)
|
122 |
+
|
123 |
+
@torch.no_grad()
|
124 |
+
def get_input(self, batch, k):
|
125 |
+
x = batch[k]
|
126 |
+
if len(x.shape) == 3:
|
127 |
+
x = x[..., None]
|
128 |
+
x = rearrange(x, 'b h w c -> b c h w')
|
129 |
+
x = x.to(memory_format=torch.contiguous_format).float()
|
130 |
+
return x
|
131 |
+
|
132 |
+
@torch.no_grad()
|
133 |
+
def get_conditioning(self, batch, k=None):
|
134 |
+
if k is None:
|
135 |
+
k = self.label_key
|
136 |
+
assert k is not None, 'Needs to provide label key'
|
137 |
+
|
138 |
+
targets = batch[k].to(self.device)
|
139 |
+
|
140 |
+
if self.label_key == 'segmentation':
|
141 |
+
targets = rearrange(targets, 'b h w c -> b c h w')
|
142 |
+
for down in range(self.numd):
|
143 |
+
h, w = targets.shape[-2:]
|
144 |
+
targets = F.interpolate(targets, size=(h // 2, w // 2), mode='nearest')
|
145 |
+
|
146 |
+
# targets = rearrange(targets,'b c h w -> b h w c')
|
147 |
+
|
148 |
+
return targets
|
149 |
+
|
150 |
+
def compute_top_k(self, logits, labels, k, reduction="mean"):
|
151 |
+
_, top_ks = torch.topk(logits, k, dim=1)
|
152 |
+
if reduction == "mean":
|
153 |
+
return (top_ks == labels[:, None]).float().sum(dim=-1).mean().item()
|
154 |
+
elif reduction == "none":
|
155 |
+
return (top_ks == labels[:, None]).float().sum(dim=-1)
|
156 |
+
|
157 |
+
def on_train_epoch_start(self):
|
158 |
+
# save some memory
|
159 |
+
self.diffusion_model.model.to('cpu')
|
160 |
+
|
161 |
+
@torch.no_grad()
|
162 |
+
def write_logs(self, loss, logits, targets):
|
163 |
+
log_prefix = 'train' if self.training else 'val'
|
164 |
+
log = {}
|
165 |
+
log[f"{log_prefix}/loss"] = loss.mean()
|
166 |
+
log[f"{log_prefix}/acc@1"] = self.compute_top_k(
|
167 |
+
logits, targets, k=1, reduction="mean"
|
168 |
+
)
|
169 |
+
log[f"{log_prefix}/acc@5"] = self.compute_top_k(
|
170 |
+
logits, targets, k=5, reduction="mean"
|
171 |
+
)
|
172 |
+
|
173 |
+
self.log_dict(log, prog_bar=False, logger=True, on_step=self.training, on_epoch=True)
|
174 |
+
self.log('loss', log[f"{log_prefix}/loss"], prog_bar=True, logger=False)
|
175 |
+
self.log('global_step', self.global_step, logger=False, on_epoch=False, prog_bar=True)
|
176 |
+
lr = self.optimizers().param_groups[0]['lr']
|
177 |
+
self.log('lr_abs', lr, on_step=True, logger=True, on_epoch=False, prog_bar=True)
|
178 |
+
|
179 |
+
def shared_step(self, batch, t=None):
|
180 |
+
x, *_ = self.diffusion_model.get_input(batch, k=self.diffusion_model.first_stage_key)
|
181 |
+
targets = self.get_conditioning(batch)
|
182 |
+
if targets.dim() == 4:
|
183 |
+
targets = targets.argmax(dim=1)
|
184 |
+
if t is None:
|
185 |
+
t = torch.randint(0, self.diffusion_model.num_timesteps, (x.shape[0],), device=self.device).long()
|
186 |
+
else:
|
187 |
+
t = torch.full(size=(x.shape[0],), fill_value=t, device=self.device).long()
|
188 |
+
x_noisy = self.get_x_noisy(x, t)
|
189 |
+
logits = self(x_noisy, t)
|
190 |
+
|
191 |
+
loss = F.cross_entropy(logits, targets, reduction='none')
|
192 |
+
|
193 |
+
self.write_logs(loss.detach(), logits.detach(), targets.detach())
|
194 |
+
|
195 |
+
loss = loss.mean()
|
196 |
+
return loss, logits, x_noisy, targets
|
197 |
+
|
198 |
+
def training_step(self, batch, batch_idx):
|
199 |
+
loss, *_ = self.shared_step(batch)
|
200 |
+
return loss
|
201 |
+
|
202 |
+
def reset_noise_accs(self):
|
203 |
+
self.noisy_acc = {t: {'acc@1': [], 'acc@5': []} for t in
|
204 |
+
range(0, self.diffusion_model.num_timesteps, self.diffusion_model.log_every_t)}
|
205 |
+
|
206 |
+
def on_validation_start(self):
|
207 |
+
self.reset_noise_accs()
|
208 |
+
|
209 |
+
@torch.no_grad()
|
210 |
+
def validation_step(self, batch, batch_idx):
|
211 |
+
loss, *_ = self.shared_step(batch)
|
212 |
+
|
213 |
+
for t in self.noisy_acc:
|
214 |
+
_, logits, _, targets = self.shared_step(batch, t)
|
215 |
+
self.noisy_acc[t]['acc@1'].append(self.compute_top_k(logits, targets, k=1, reduction='mean'))
|
216 |
+
self.noisy_acc[t]['acc@5'].append(self.compute_top_k(logits, targets, k=5, reduction='mean'))
|
217 |
+
|
218 |
+
return loss
|
219 |
+
|
220 |
+
def configure_optimizers(self):
|
221 |
+
optimizer = AdamW(self.model.parameters(), lr=self.learning_rate, weight_decay=self.weight_decay)
|
222 |
+
|
223 |
+
if self.use_scheduler:
|
224 |
+
scheduler = instantiate_from_config(self.scheduler_config)
|
225 |
+
|
226 |
+
print("Setting up LambdaLR scheduler...")
|
227 |
+
scheduler = [
|
228 |
+
{
|
229 |
+
'scheduler': LambdaLR(optimizer, lr_lambda=scheduler.schedule),
|
230 |
+
'interval': 'step',
|
231 |
+
'frequency': 1
|
232 |
+
}]
|
233 |
+
return [optimizer], scheduler
|
234 |
+
|
235 |
+
return optimizer
|
236 |
+
|
237 |
+
@torch.no_grad()
|
238 |
+
def log_images(self, batch, N=8, *args, **kwargs):
|
239 |
+
log = dict()
|
240 |
+
x = self.get_input(batch, self.diffusion_model.first_stage_key)
|
241 |
+
log['inputs'] = x
|
242 |
+
|
243 |
+
y = self.get_conditioning(batch)
|
244 |
+
|
245 |
+
if self.label_key == 'class_label':
|
246 |
+
y = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
|
247 |
+
log['labels'] = y
|
248 |
+
|
249 |
+
if ismap(y):
|
250 |
+
log['labels'] = self.diffusion_model.to_rgb(y)
|
251 |
+
|
252 |
+
for step in range(self.log_steps):
|
253 |
+
current_time = step * self.log_time_interval
|
254 |
+
|
255 |
+
_, logits, x_noisy, _ = self.shared_step(batch, t=current_time)
|
256 |
+
|
257 |
+
log[f'inputs@t{current_time}'] = x_noisy
|
258 |
+
|
259 |
+
pred = F.one_hot(logits.argmax(dim=1), num_classes=self.num_classes)
|
260 |
+
pred = rearrange(pred, 'b h w c -> b c h w')
|
261 |
+
|
262 |
+
log[f'pred@t{current_time}'] = self.diffusion_model.to_rgb(pred)
|
263 |
+
|
264 |
+
for key in log:
|
265 |
+
log[key] = log[key][:N]
|
266 |
+
|
267 |
+
return log
|
ldm/models/diffusion/ddim.py
ADDED
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""SAMPLING ONLY."""
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
from tqdm import tqdm
|
6 |
+
from functools import partial
|
7 |
+
|
8 |
+
from ldm.models.diffusion.ddpm import noise_like
|
9 |
+
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps
|
10 |
+
|
11 |
+
|
12 |
+
class DDIMSampler(object):
|
13 |
+
def __init__(self, model, schedule="linear", **kwargs):
|
14 |
+
super().__init__()
|
15 |
+
self.model = model
|
16 |
+
self.ddpm_num_timesteps = model.num_timesteps
|
17 |
+
self.schedule = schedule
|
18 |
+
|
19 |
+
def register_buffer(self, name, attr):
|
20 |
+
if type(attr) == torch.Tensor:
|
21 |
+
if attr.device != torch.device("cuda"):
|
22 |
+
attr = attr.to(torch.device("cuda"))
|
23 |
+
setattr(self, name, attr)
|
24 |
+
|
25 |
+
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
|
26 |
+
self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
|
27 |
+
num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
|
28 |
+
alphas_cumprod = self.model.alphas_cumprod
|
29 |
+
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
|
30 |
+
|
31 |
+
to_torch = partial(torch.tensor, dtype=torch.float32, device=self.model.device)
|
32 |
+
|
33 |
+
self.register_buffer('betas', to_torch(self.model.betas))
|
34 |
+
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
35 |
+
self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
|
36 |
+
|
37 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
38 |
+
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
|
39 |
+
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
|
40 |
+
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
|
41 |
+
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
|
42 |
+
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
|
43 |
+
|
44 |
+
# ddim sampling parameters
|
45 |
+
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
|
46 |
+
ddim_timesteps=self.ddim_timesteps,
|
47 |
+
eta=ddim_eta,verbose=verbose)
|
48 |
+
self.register_buffer('ddim_sigmas', ddim_sigmas)
|
49 |
+
self.register_buffer('ddim_alphas', ddim_alphas)
|
50 |
+
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
|
51 |
+
self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
|
52 |
+
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
53 |
+
(1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
|
54 |
+
1 - self.alphas_cumprod / self.alphas_cumprod_prev))
|
55 |
+
self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
|
56 |
+
|
57 |
+
@torch.no_grad()
|
58 |
+
def sample(self,
|
59 |
+
S,
|
60 |
+
batch_size,
|
61 |
+
shape,
|
62 |
+
conditioning=None,
|
63 |
+
callback=None,
|
64 |
+
normals_sequence=None,
|
65 |
+
img_callback=None,
|
66 |
+
quantize_x0=False,
|
67 |
+
eta=0.,
|
68 |
+
mask=None,
|
69 |
+
x0=None,
|
70 |
+
temperature=1.,
|
71 |
+
noise_dropout=0.,
|
72 |
+
score_corrector=None,
|
73 |
+
corrector_kwargs=None,
|
74 |
+
verbose=True,
|
75 |
+
x_T=None,
|
76 |
+
log_every_t=100
|
77 |
+
):
|
78 |
+
if conditioning is not None:
|
79 |
+
if isinstance(conditioning, dict):
|
80 |
+
cbs = conditioning[list(conditioning.keys())[0]].shape[0]
|
81 |
+
if cbs != batch_size:
|
82 |
+
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
83 |
+
else:
|
84 |
+
if conditioning.shape[0] != batch_size:
|
85 |
+
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
86 |
+
|
87 |
+
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
|
88 |
+
# sampling
|
89 |
+
C, H, W = shape
|
90 |
+
size = (batch_size, C, H, W)
|
91 |
+
print(f'Data shape for DDIM sampling is {size}, eta {eta}')
|
92 |
+
|
93 |
+
samples, intermediates = self.ddim_sampling(conditioning, size,
|
94 |
+
callback=callback,
|
95 |
+
img_callback=img_callback,
|
96 |
+
quantize_denoised=quantize_x0,
|
97 |
+
mask=mask, x0=x0,
|
98 |
+
ddim_use_original_steps=False,
|
99 |
+
noise_dropout=noise_dropout,
|
100 |
+
temperature=temperature,
|
101 |
+
score_corrector=score_corrector,
|
102 |
+
corrector_kwargs=corrector_kwargs,
|
103 |
+
x_T=x_T,
|
104 |
+
log_every_t=log_every_t
|
105 |
+
)
|
106 |
+
return samples, intermediates
|
107 |
+
|
108 |
+
@torch.no_grad()
|
109 |
+
def ddim_sampling(self, cond, shape,
|
110 |
+
x_T=None, ddim_use_original_steps=False,
|
111 |
+
callback=None, timesteps=None, quantize_denoised=False,
|
112 |
+
mask=None, x0=None, img_callback=None, log_every_t=100,
|
113 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None):
|
114 |
+
device = self.model.betas.device
|
115 |
+
b = shape[0]
|
116 |
+
if x_T is None:
|
117 |
+
img = torch.randn(shape, device=device)
|
118 |
+
else:
|
119 |
+
img = x_T
|
120 |
+
|
121 |
+
if timesteps is None:
|
122 |
+
timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
|
123 |
+
elif timesteps is not None and not ddim_use_original_steps:
|
124 |
+
subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
|
125 |
+
timesteps = self.ddim_timesteps[:subset_end]
|
126 |
+
|
127 |
+
intermediates = {'x_inter': [img], 'pred_x0': [img]}
|
128 |
+
time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps)
|
129 |
+
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
130 |
+
print(f"Running DDIM Sampling with {total_steps} timesteps")
|
131 |
+
|
132 |
+
iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
|
133 |
+
|
134 |
+
for i, step in enumerate(iterator):
|
135 |
+
index = total_steps - i - 1
|
136 |
+
ts = torch.full((b,), step, device=device, dtype=torch.long)
|
137 |
+
|
138 |
+
if mask is not None:
|
139 |
+
assert x0 is not None
|
140 |
+
img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
|
141 |
+
img = img_orig * mask + (1. - mask) * img
|
142 |
+
|
143 |
+
outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
|
144 |
+
quantize_denoised=quantize_denoised, temperature=temperature,
|
145 |
+
noise_dropout=noise_dropout, score_corrector=score_corrector,
|
146 |
+
corrector_kwargs=corrector_kwargs)
|
147 |
+
img, pred_x0 = outs
|
148 |
+
if callback: callback(i)
|
149 |
+
if img_callback: img_callback(pred_x0, i)
|
150 |
+
|
151 |
+
if index % log_every_t == 0 or index == total_steps - 1:
|
152 |
+
intermediates['x_inter'].append(img)
|
153 |
+
intermediates['pred_x0'].append(pred_x0)
|
154 |
+
|
155 |
+
return img, intermediates
|
156 |
+
|
157 |
+
@torch.no_grad()
|
158 |
+
def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
159 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None):
|
160 |
+
b, *_, device = *x.shape, x.device
|
161 |
+
e_t = self.model.apply_model(x, t, c)
|
162 |
+
if score_corrector is not None:
|
163 |
+
assert self.model.parameterization == "eps"
|
164 |
+
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
|
165 |
+
|
166 |
+
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
167 |
+
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
|
168 |
+
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
|
169 |
+
sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
|
170 |
+
# select parameters corresponding to the currently considered timestep
|
171 |
+
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
172 |
+
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
|
173 |
+
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
174 |
+
sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
|
175 |
+
|
176 |
+
# current prediction for x_0
|
177 |
+
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
178 |
+
if quantize_denoised:
|
179 |
+
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
180 |
+
# direction pointing to x_t
|
181 |
+
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
|
182 |
+
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
183 |
+
if noise_dropout > 0.:
|
184 |
+
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
185 |
+
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
186 |
+
return x_prev, pred_x0
|
ldm/models/diffusion/ddpm.py
ADDED
@@ -0,0 +1,1430 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
wild mixture of
|
3 |
+
https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
|
4 |
+
https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py
|
5 |
+
https://github.com/CompVis/taming-transformers
|
6 |
+
-- merci
|
7 |
+
"""
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import numpy as np
|
12 |
+
import pytorch_lightning as pl
|
13 |
+
from torch.optim.lr_scheduler import LambdaLR
|
14 |
+
from einops import rearrange, repeat
|
15 |
+
from contextlib import contextmanager
|
16 |
+
from functools import partial
|
17 |
+
from tqdm import tqdm
|
18 |
+
from torchvision.utils import make_grid
|
19 |
+
from PIL import Image
|
20 |
+
from pytorch_lightning.utilities.distributed import rank_zero_only
|
21 |
+
|
22 |
+
from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
|
23 |
+
from ldm.modules.ema import LitEma
|
24 |
+
from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution
|
25 |
+
from ldm.models.autoencoder import VQModelInterface, IdentityFirstStage, AutoencoderKL
|
26 |
+
from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor
|
27 |
+
|
28 |
+
|
29 |
+
__conditioning_keys__ = {'concat': 'c_concat',
|
30 |
+
'crossattn': 'c_crossattn',
|
31 |
+
'adm': 'y'}
|
32 |
+
|
33 |
+
|
34 |
+
def disabled_train(self, mode=True):
|
35 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
36 |
+
does not change anymore."""
|
37 |
+
return self
|
38 |
+
|
39 |
+
|
40 |
+
def noise_like(shape, device, repeat=False):
|
41 |
+
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
|
42 |
+
noise = lambda: torch.randn(shape, device=device)
|
43 |
+
return repeat_noise() if repeat else noise()
|
44 |
+
|
45 |
+
|
46 |
+
def uniform_on_device(r1, r2, shape, device):
|
47 |
+
return (r1 - r2) * torch.rand(*shape, device=device) + r2
|
48 |
+
|
49 |
+
|
50 |
+
class DDPM(pl.LightningModule):
|
51 |
+
# classic DDPM with Gaussian diffusion, in image space
|
52 |
+
def __init__(self,
|
53 |
+
unet_config,
|
54 |
+
timesteps=1000,
|
55 |
+
beta_schedule="linear",
|
56 |
+
loss_type="l2",
|
57 |
+
ckpt_path=None,
|
58 |
+
ignore_keys=[],
|
59 |
+
load_only_unet=False,
|
60 |
+
monitor="val/loss",
|
61 |
+
use_ema=True,
|
62 |
+
first_stage_key="image",
|
63 |
+
image_size=256,
|
64 |
+
channels=3,
|
65 |
+
log_every_t=100,
|
66 |
+
clip_denoised=True,
|
67 |
+
linear_start=1e-4,
|
68 |
+
linear_end=2e-2,
|
69 |
+
cosine_s=8e-3,
|
70 |
+
given_betas=None,
|
71 |
+
original_elbo_weight=0.,
|
72 |
+
v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
|
73 |
+
l_simple_weight=1.,
|
74 |
+
conditioning_key=None,
|
75 |
+
parameterization="eps", # all assuming fixed variance schedules
|
76 |
+
scheduler_config=None,
|
77 |
+
use_positional_encodings=False,
|
78 |
+
learn_logvar=False,
|
79 |
+
logvar_init=0.,
|
80 |
+
):
|
81 |
+
super().__init__()
|
82 |
+
assert parameterization in ["eps", "x0"], 'currently only supporting "eps" and "x0"'
|
83 |
+
self.parameterization = parameterization
|
84 |
+
print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode")
|
85 |
+
self.cond_stage_model = None
|
86 |
+
self.clip_denoised = clip_denoised
|
87 |
+
self.log_every_t = log_every_t
|
88 |
+
self.first_stage_key = first_stage_key
|
89 |
+
self.image_size = image_size # try conv?
|
90 |
+
self.channels = channels
|
91 |
+
self.use_positional_encodings = use_positional_encodings
|
92 |
+
self.model = DiffusionWrapper(unet_config, conditioning_key)
|
93 |
+
count_params(self.model, verbose=True)
|
94 |
+
self.use_ema = use_ema
|
95 |
+
if self.use_ema:
|
96 |
+
self.model_ema = LitEma(self.model)
|
97 |
+
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
|
98 |
+
|
99 |
+
self.use_scheduler = scheduler_config is not None
|
100 |
+
if self.use_scheduler:
|
101 |
+
self.scheduler_config = scheduler_config
|
102 |
+
|
103 |
+
self.v_posterior = v_posterior
|
104 |
+
self.original_elbo_weight = original_elbo_weight
|
105 |
+
self.l_simple_weight = l_simple_weight
|
106 |
+
|
107 |
+
if monitor is not None:
|
108 |
+
self.monitor = monitor
|
109 |
+
if ckpt_path is not None:
|
110 |
+
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet)
|
111 |
+
|
112 |
+
self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps,
|
113 |
+
linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
|
114 |
+
|
115 |
+
self.loss_type = loss_type
|
116 |
+
|
117 |
+
self.learn_logvar = learn_logvar
|
118 |
+
self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
|
119 |
+
if self.learn_logvar:
|
120 |
+
self.logvar = nn.Parameter(self.logvar, requires_grad=True)
|
121 |
+
|
122 |
+
def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
|
123 |
+
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
124 |
+
if exists(given_betas):
|
125 |
+
betas = given_betas
|
126 |
+
else:
|
127 |
+
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
|
128 |
+
cosine_s=cosine_s)
|
129 |
+
alphas = 1. - betas
|
130 |
+
alphas_cumprod = np.cumprod(alphas, axis=0)
|
131 |
+
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
|
132 |
+
|
133 |
+
timesteps, = betas.shape
|
134 |
+
self.num_timesteps = int(timesteps)
|
135 |
+
self.linear_start = linear_start
|
136 |
+
self.linear_end = linear_end
|
137 |
+
assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
|
138 |
+
|
139 |
+
to_torch = partial(torch.tensor, dtype=torch.float32)
|
140 |
+
|
141 |
+
self.register_buffer('betas', to_torch(betas))
|
142 |
+
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
143 |
+
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
|
144 |
+
|
145 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
146 |
+
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
|
147 |
+
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
|
148 |
+
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
|
149 |
+
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
|
150 |
+
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
|
151 |
+
|
152 |
+
# calculations for posterior q(x_{t-1} | x_t, x_0)
|
153 |
+
posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / (
|
154 |
+
1. - alphas_cumprod) + self.v_posterior * betas
|
155 |
+
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
|
156 |
+
self.register_buffer('posterior_variance', to_torch(posterior_variance))
|
157 |
+
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
|
158 |
+
self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
|
159 |
+
self.register_buffer('posterior_mean_coef1', to_torch(
|
160 |
+
betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
|
161 |
+
self.register_buffer('posterior_mean_coef2', to_torch(
|
162 |
+
(1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
|
163 |
+
|
164 |
+
if self.parameterization == "eps":
|
165 |
+
lvlb_weights = self.betas ** 2 / (
|
166 |
+
2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))
|
167 |
+
elif self.parameterization == "x0":
|
168 |
+
lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod))
|
169 |
+
else:
|
170 |
+
raise NotImplementedError("mu not supported")
|
171 |
+
# TODO how to choose this term
|
172 |
+
lvlb_weights[0] = lvlb_weights[1]
|
173 |
+
self.register_buffer('lvlb_weights', lvlb_weights, persistent=False)
|
174 |
+
assert not torch.isnan(self.lvlb_weights).all()
|
175 |
+
|
176 |
+
@contextmanager
|
177 |
+
def ema_scope(self, context=None):
|
178 |
+
if self.use_ema:
|
179 |
+
self.model_ema.store(self.model.parameters())
|
180 |
+
self.model_ema.copy_to(self.model)
|
181 |
+
if context is not None:
|
182 |
+
print(f"{context}: Switched to EMA weights")
|
183 |
+
try:
|
184 |
+
yield None
|
185 |
+
finally:
|
186 |
+
if self.use_ema:
|
187 |
+
self.model_ema.restore(self.model.parameters())
|
188 |
+
if context is not None:
|
189 |
+
print(f"{context}: Restored training weights")
|
190 |
+
|
191 |
+
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
|
192 |
+
sd = torch.load(path, map_location="cpu")
|
193 |
+
if "state_dict" in list(sd.keys()):
|
194 |
+
sd = sd["state_dict"]
|
195 |
+
keys = list(sd.keys())
|
196 |
+
for k in keys:
|
197 |
+
for ik in ignore_keys:
|
198 |
+
if k.startswith(ik):
|
199 |
+
print("Deleting key {} from state_dict.".format(k))
|
200 |
+
del sd[k]
|
201 |
+
missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
|
202 |
+
sd, strict=False)
|
203 |
+
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
204 |
+
if len(missing) > 0:
|
205 |
+
print(f"Missing Keys: {missing}")
|
206 |
+
if len(unexpected) > 0:
|
207 |
+
print(f"Unexpected Keys: {unexpected}")
|
208 |
+
|
209 |
+
def q_mean_variance(self, x_start, t):
|
210 |
+
"""
|
211 |
+
Get the distribution q(x_t | x_0).
|
212 |
+
:param x_start: the [N x C x ...] tensor of noiseless inputs.
|
213 |
+
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
|
214 |
+
:return: A tuple (mean, variance, log_variance), all of x_start's shape.
|
215 |
+
"""
|
216 |
+
mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start)
|
217 |
+
variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
|
218 |
+
log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape)
|
219 |
+
return mean, variance, log_variance
|
220 |
+
|
221 |
+
def predict_start_from_noise(self, x_t, t, noise):
|
222 |
+
return (
|
223 |
+
extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
|
224 |
+
extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
|
225 |
+
)
|
226 |
+
|
227 |
+
def q_posterior(self, x_start, x_t, t):
|
228 |
+
posterior_mean = (
|
229 |
+
extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start +
|
230 |
+
extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
|
231 |
+
)
|
232 |
+
posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
|
233 |
+
posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape)
|
234 |
+
return posterior_mean, posterior_variance, posterior_log_variance_clipped
|
235 |
+
|
236 |
+
def p_mean_variance(self, x, t, clip_denoised: bool):
|
237 |
+
model_out = self.model(x, t)
|
238 |
+
if self.parameterization == "eps":
|
239 |
+
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
|
240 |
+
elif self.parameterization == "x0":
|
241 |
+
x_recon = model_out
|
242 |
+
if clip_denoised:
|
243 |
+
x_recon.clamp_(-1., 1.)
|
244 |
+
|
245 |
+
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
|
246 |
+
return model_mean, posterior_variance, posterior_log_variance
|
247 |
+
|
248 |
+
@torch.no_grad()
|
249 |
+
def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
|
250 |
+
b, *_, device = *x.shape, x.device
|
251 |
+
model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised)
|
252 |
+
noise = noise_like(x.shape, device, repeat_noise)
|
253 |
+
# no noise when t == 0
|
254 |
+
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
255 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
256 |
+
|
257 |
+
@torch.no_grad()
|
258 |
+
def p_sample_loop(self, shape, return_intermediates=False):
|
259 |
+
device = self.betas.device
|
260 |
+
b = shape[0]
|
261 |
+
img = torch.randn(shape, device=device)
|
262 |
+
intermediates = [img]
|
263 |
+
for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps):
|
264 |
+
img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long),
|
265 |
+
clip_denoised=self.clip_denoised)
|
266 |
+
if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
|
267 |
+
intermediates.append(img)
|
268 |
+
if return_intermediates:
|
269 |
+
return img, intermediates
|
270 |
+
return img
|
271 |
+
|
272 |
+
@torch.no_grad()
|
273 |
+
def sample(self, batch_size=16, return_intermediates=False):
|
274 |
+
image_size = self.image_size
|
275 |
+
channels = self.channels
|
276 |
+
return self.p_sample_loop((batch_size, channels, image_size, image_size),
|
277 |
+
return_intermediates=return_intermediates)
|
278 |
+
|
279 |
+
def q_sample(self, x_start, t, noise=None):
|
280 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
281 |
+
return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
|
282 |
+
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
|
283 |
+
|
284 |
+
def get_loss(self, pred, target, mean=True):
|
285 |
+
if self.loss_type == 'l1':
|
286 |
+
loss = (target - pred).abs()
|
287 |
+
if mean:
|
288 |
+
loss = loss.mean()
|
289 |
+
elif self.loss_type == 'l2':
|
290 |
+
if mean:
|
291 |
+
loss = torch.nn.functional.mse_loss(target, pred)
|
292 |
+
else:
|
293 |
+
loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
|
294 |
+
else:
|
295 |
+
raise NotImplementedError("unknown loss type '{loss_type}'")
|
296 |
+
|
297 |
+
return loss
|
298 |
+
|
299 |
+
def p_losses(self, x_start, t, noise=None):
|
300 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
301 |
+
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
302 |
+
model_out = self.model(x_noisy, t)
|
303 |
+
|
304 |
+
loss_dict = {}
|
305 |
+
if self.parameterization == "eps":
|
306 |
+
target = noise
|
307 |
+
elif self.parameterization == "x0":
|
308 |
+
target = x_start
|
309 |
+
else:
|
310 |
+
raise NotImplementedError(f"Paramterization {self.parameterization} not yet supported")
|
311 |
+
|
312 |
+
loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3])
|
313 |
+
|
314 |
+
log_prefix = 'train' if self.training else 'val'
|
315 |
+
|
316 |
+
loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()})
|
317 |
+
loss_simple = loss.mean() * self.l_simple_weight
|
318 |
+
|
319 |
+
loss_vlb = (self.lvlb_weights[t] * loss).mean()
|
320 |
+
loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb})
|
321 |
+
|
322 |
+
loss = loss_simple + self.original_elbo_weight * loss_vlb
|
323 |
+
|
324 |
+
loss_dict.update({f'{log_prefix}/loss': loss})
|
325 |
+
|
326 |
+
return loss, loss_dict
|
327 |
+
|
328 |
+
def forward(self, x, *args, **kwargs):
|
329 |
+
# b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size
|
330 |
+
# assert h == img_size and w == img_size, f'height and width of image must be {img_size}'
|
331 |
+
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
|
332 |
+
return self.p_losses(x, t, *args, **kwargs)
|
333 |
+
|
334 |
+
def get_input(self, batch, k):
|
335 |
+
x = batch[k]
|
336 |
+
if len(x.shape) == 3:
|
337 |
+
x = x[..., None]
|
338 |
+
x = rearrange(x, 'b h w c -> b c h w')
|
339 |
+
x = x.to(memory_format=torch.contiguous_format).float()
|
340 |
+
return x
|
341 |
+
|
342 |
+
def shared_step(self, batch):
|
343 |
+
x = self.get_input(batch, self.first_stage_key)
|
344 |
+
loss, loss_dict = self(x)
|
345 |
+
return loss, loss_dict
|
346 |
+
|
347 |
+
def training_step(self, batch, batch_idx):
|
348 |
+
loss, loss_dict = self.shared_step(batch)
|
349 |
+
|
350 |
+
self.log_dict(loss_dict, prog_bar=True,
|
351 |
+
logger=True, on_step=True, on_epoch=True)
|
352 |
+
|
353 |
+
self.log("global_step", self.global_step,
|
354 |
+
prog_bar=True, logger=True, on_step=True, on_epoch=False)
|
355 |
+
|
356 |
+
if self.use_scheduler:
|
357 |
+
lr = self.optimizers().param_groups[0]['lr']
|
358 |
+
self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False)
|
359 |
+
|
360 |
+
return loss
|
361 |
+
|
362 |
+
@torch.no_grad()
|
363 |
+
def validation_step(self, batch, batch_idx):
|
364 |
+
_, loss_dict_no_ema = self.shared_step(batch)
|
365 |
+
with self.ema_scope():
|
366 |
+
_, loss_dict_ema = self.shared_step(batch)
|
367 |
+
loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema}
|
368 |
+
self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
|
369 |
+
self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
|
370 |
+
|
371 |
+
def on_train_batch_end(self, *args, **kwargs):
|
372 |
+
if self.use_ema:
|
373 |
+
self.model_ema(self.model)
|
374 |
+
|
375 |
+
def _get_rows_from_list(self, samples):
|
376 |
+
n_imgs_per_row = len(samples)
|
377 |
+
denoise_grid = rearrange(samples, 'n b c h w -> b n c h w')
|
378 |
+
denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
|
379 |
+
denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
|
380 |
+
return denoise_grid
|
381 |
+
|
382 |
+
@torch.no_grad()
|
383 |
+
def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs):
|
384 |
+
log = dict()
|
385 |
+
x = self.get_input(batch, self.first_stage_key)
|
386 |
+
N = min(x.shape[0], N)
|
387 |
+
n_row = min(x.shape[0], n_row)
|
388 |
+
x = x.to(self.device)[:N]
|
389 |
+
log["inputs"] = x
|
390 |
+
|
391 |
+
# get diffusion row
|
392 |
+
diffusion_row = list()
|
393 |
+
x_start = x[:n_row]
|
394 |
+
|
395 |
+
for t in range(self.num_timesteps):
|
396 |
+
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
397 |
+
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
|
398 |
+
t = t.to(self.device).long()
|
399 |
+
noise = torch.randn_like(x_start)
|
400 |
+
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
401 |
+
diffusion_row.append(x_noisy)
|
402 |
+
|
403 |
+
log["diffusion_row"] = self._get_rows_from_list(diffusion_row)
|
404 |
+
|
405 |
+
if sample:
|
406 |
+
# get denoise row
|
407 |
+
with self.ema_scope("Plotting"):
|
408 |
+
samples, denoise_row = self.sample(batch_size=N, return_intermediates=True)
|
409 |
+
|
410 |
+
log["samples"] = samples
|
411 |
+
log["denoise_row"] = self._get_rows_from_list(denoise_row)
|
412 |
+
|
413 |
+
if return_keys:
|
414 |
+
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
|
415 |
+
return log
|
416 |
+
else:
|
417 |
+
return {key: log[key] for key in return_keys}
|
418 |
+
return log
|
419 |
+
|
420 |
+
def configure_optimizers(self):
|
421 |
+
lr = self.learning_rate
|
422 |
+
params = list(self.model.parameters())
|
423 |
+
if self.learn_logvar:
|
424 |
+
params = params + [self.logvar]
|
425 |
+
opt = torch.optim.AdamW(params, lr=lr)
|
426 |
+
return opt
|
427 |
+
|
428 |
+
|
429 |
+
class LatentDiffusion(DDPM):
|
430 |
+
"""main class"""
|
431 |
+
def __init__(self,
|
432 |
+
first_stage_config,
|
433 |
+
cond_stage_config,
|
434 |
+
num_timesteps_cond=None,
|
435 |
+
cond_stage_key="image",
|
436 |
+
cond_stage_trainable=False,
|
437 |
+
concat_mode=True,
|
438 |
+
cond_stage_forward=None,
|
439 |
+
conditioning_key=None,
|
440 |
+
scale_factor=1.0,
|
441 |
+
scale_by_std=False,
|
442 |
+
*args, **kwargs):
|
443 |
+
self.num_timesteps_cond = default(num_timesteps_cond, 1)
|
444 |
+
self.scale_by_std = scale_by_std
|
445 |
+
assert self.num_timesteps_cond <= kwargs['timesteps']
|
446 |
+
# for backwards compatibility after implementation of DiffusionWrapper
|
447 |
+
if conditioning_key is None:
|
448 |
+
conditioning_key = 'concat' if concat_mode else 'crossattn'
|
449 |
+
if cond_stage_config == '__is_unconditional__':
|
450 |
+
conditioning_key = None
|
451 |
+
ckpt_path = kwargs.pop("ckpt_path", None)
|
452 |
+
ignore_keys = kwargs.pop("ignore_keys", [])
|
453 |
+
super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
|
454 |
+
self.concat_mode = concat_mode
|
455 |
+
self.cond_stage_trainable = cond_stage_trainable
|
456 |
+
self.cond_stage_key = cond_stage_key
|
457 |
+
try:
|
458 |
+
self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
|
459 |
+
except:
|
460 |
+
self.num_downs = 0
|
461 |
+
if not scale_by_std:
|
462 |
+
self.scale_factor = scale_factor
|
463 |
+
else:
|
464 |
+
self.register_buffer('scale_factor', torch.tensor(scale_factor))
|
465 |
+
self.instantiate_first_stage(first_stage_config)
|
466 |
+
self.instantiate_cond_stage(cond_stage_config)
|
467 |
+
self.cond_stage_forward = cond_stage_forward
|
468 |
+
self.clip_denoised = False
|
469 |
+
self.bbox_tokenizer = None # # TODO: special class?
|
470 |
+
|
471 |
+
self.restarted_from_ckpt = False
|
472 |
+
if ckpt_path is not None:
|
473 |
+
self.init_from_ckpt(ckpt_path, ignore_keys)
|
474 |
+
self.restarted_from_ckpt = True
|
475 |
+
|
476 |
+
def make_cond_schedule(self, ):
|
477 |
+
self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
|
478 |
+
ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
|
479 |
+
self.cond_ids[:self.num_timesteps_cond] = ids
|
480 |
+
|
481 |
+
@rank_zero_only
|
482 |
+
@torch.no_grad()
|
483 |
+
def on_train_batch_start(self, batch, batch_idx, dataloader_idx):
|
484 |
+
# only for very first batch
|
485 |
+
if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt:
|
486 |
+
assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously'
|
487 |
+
# set rescale weight to 1./std of encodings
|
488 |
+
print("### USING STD-RESCALING ###")
|
489 |
+
x = super().get_input(batch, self.first_stage_key)
|
490 |
+
x = x.to(self.device)
|
491 |
+
encoder_posterior = self.encode_first_stage(x)
|
492 |
+
z = self.get_first_stage_encoding(encoder_posterior).detach()
|
493 |
+
del self.scale_factor
|
494 |
+
self.register_buffer('scale_factor', 1. / z.flatten().std())
|
495 |
+
print(f"setting self.scale_factor to {self.scale_factor}")
|
496 |
+
print("### USING STD-RESCALING ###")
|
497 |
+
|
498 |
+
def register_schedule(self,
|
499 |
+
given_betas=None, beta_schedule="linear", timesteps=1000,
|
500 |
+
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
501 |
+
super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s)
|
502 |
+
|
503 |
+
self.shorten_cond_schedule = self.num_timesteps_cond > 1
|
504 |
+
if self.shorten_cond_schedule:
|
505 |
+
self.make_cond_schedule()
|
506 |
+
|
507 |
+
def instantiate_first_stage(self, config):
|
508 |
+
model = instantiate_from_config(config)
|
509 |
+
self.first_stage_model = model.eval()
|
510 |
+
self.first_stage_model.train = disabled_train
|
511 |
+
for param in self.first_stage_model.parameters():
|
512 |
+
param.requires_grad = False
|
513 |
+
|
514 |
+
def instantiate_cond_stage(self, config):
|
515 |
+
if not self.cond_stage_trainable:
|
516 |
+
if config == "__is_first_stage__":
|
517 |
+
print("Using first stage also as cond stage.")
|
518 |
+
self.cond_stage_model = self.first_stage_model
|
519 |
+
elif config == "__is_unconditional__":
|
520 |
+
print(f"Training {self.__class__.__name__} as an unconditional model.")
|
521 |
+
self.cond_stage_model = None
|
522 |
+
# self.be_unconditional = True
|
523 |
+
else:
|
524 |
+
model = instantiate_from_config(config)
|
525 |
+
self.cond_stage_model = model.eval()
|
526 |
+
self.cond_stage_model.train = disabled_train
|
527 |
+
for param in self.cond_stage_model.parameters():
|
528 |
+
param.requires_grad = False
|
529 |
+
else:
|
530 |
+
assert config != '__is_first_stage__'
|
531 |
+
assert config != '__is_unconditional__'
|
532 |
+
model = instantiate_from_config(config)
|
533 |
+
self.cond_stage_model = model
|
534 |
+
|
535 |
+
def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False):
|
536 |
+
denoise_row = []
|
537 |
+
for zd in tqdm(samples, desc=desc):
|
538 |
+
denoise_row.append(self.decode_first_stage(zd.to(self.device),
|
539 |
+
force_not_quantize=force_no_decoder_quantization))
|
540 |
+
n_imgs_per_row = len(denoise_row)
|
541 |
+
denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W
|
542 |
+
denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w')
|
543 |
+
denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
|
544 |
+
denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
|
545 |
+
return denoise_grid
|
546 |
+
|
547 |
+
def get_first_stage_encoding(self, encoder_posterior):
|
548 |
+
if isinstance(encoder_posterior, DiagonalGaussianDistribution):
|
549 |
+
z = encoder_posterior.sample()
|
550 |
+
elif isinstance(encoder_posterior, torch.Tensor):
|
551 |
+
z = encoder_posterior
|
552 |
+
else:
|
553 |
+
raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
|
554 |
+
return self.scale_factor * z
|
555 |
+
|
556 |
+
def get_learned_conditioning(self, c):
|
557 |
+
if self.cond_stage_forward is None:
|
558 |
+
if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
|
559 |
+
c = self.cond_stage_model.encode(c)
|
560 |
+
if isinstance(c, DiagonalGaussianDistribution):
|
561 |
+
c = c.mode()
|
562 |
+
else:
|
563 |
+
c = self.cond_stage_model(c)
|
564 |
+
else:
|
565 |
+
assert hasattr(self.cond_stage_model, self.cond_stage_forward)
|
566 |
+
c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
|
567 |
+
return c
|
568 |
+
|
569 |
+
def meshgrid(self, h, w):
|
570 |
+
y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)
|
571 |
+
x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)
|
572 |
+
|
573 |
+
arr = torch.cat([y, x], dim=-1)
|
574 |
+
return arr
|
575 |
+
|
576 |
+
def delta_border(self, h, w):
|
577 |
+
"""
|
578 |
+
:param h: height
|
579 |
+
:param w: width
|
580 |
+
:return: normalized distance to image border,
|
581 |
+
wtith min distance = 0 at border and max dist = 0.5 at image center
|
582 |
+
"""
|
583 |
+
lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
|
584 |
+
arr = self.meshgrid(h, w) / lower_right_corner
|
585 |
+
dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]
|
586 |
+
dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]
|
587 |
+
edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0]
|
588 |
+
return edge_dist
|
589 |
+
|
590 |
+
def get_weighting(self, h, w, Ly, Lx, device):
|
591 |
+
weighting = self.delta_border(h, w)
|
592 |
+
weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"],
|
593 |
+
self.split_input_params["clip_max_weight"], )
|
594 |
+
weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)
|
595 |
+
|
596 |
+
if self.split_input_params["tie_braker"]:
|
597 |
+
L_weighting = self.delta_border(Ly, Lx)
|
598 |
+
L_weighting = torch.clip(L_weighting,
|
599 |
+
self.split_input_params["clip_min_tie_weight"],
|
600 |
+
self.split_input_params["clip_max_tie_weight"])
|
601 |
+
|
602 |
+
L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)
|
603 |
+
weighting = weighting * L_weighting
|
604 |
+
return weighting
|
605 |
+
|
606 |
+
def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1): # todo load once not every time, shorten code !
|
607 |
+
"""
|
608 |
+
:param x: img of size (bs, c, h, w)
|
609 |
+
:return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])
|
610 |
+
"""
|
611 |
+
bs, nc, h, w = x.shape
|
612 |
+
|
613 |
+
# number of crops in image
|
614 |
+
Ly = (h - kernel_size[0]) // stride[0] + 1
|
615 |
+
Lx = (w - kernel_size[1]) // stride[1] + 1
|
616 |
+
|
617 |
+
if uf == 1 and df == 1:
|
618 |
+
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
|
619 |
+
unfold = torch.nn.Unfold(**fold_params)
|
620 |
+
|
621 |
+
fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)
|
622 |
+
|
623 |
+
weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype)
|
624 |
+
normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap
|
625 |
+
weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))
|
626 |
+
|
627 |
+
elif uf > 1 and df == 1:
|
628 |
+
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
|
629 |
+
unfold = torch.nn.Unfold(**fold_params)
|
630 |
+
|
631 |
+
fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf),
|
632 |
+
dilation=1, padding=0,
|
633 |
+
stride=(stride[0] * uf, stride[1] * uf))
|
634 |
+
fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2)
|
635 |
+
|
636 |
+
weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype)
|
637 |
+
normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap
|
638 |
+
weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx))
|
639 |
+
|
640 |
+
elif df > 1 and uf == 1:
|
641 |
+
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
|
642 |
+
unfold = torch.nn.Unfold(**fold_params)
|
643 |
+
|
644 |
+
fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df),
|
645 |
+
dilation=1, padding=0,
|
646 |
+
stride=(stride[0] // df, stride[1] // df))
|
647 |
+
fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2)
|
648 |
+
|
649 |
+
weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype)
|
650 |
+
normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap
|
651 |
+
weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx))
|
652 |
+
|
653 |
+
else:
|
654 |
+
raise NotImplementedError
|
655 |
+
|
656 |
+
return fold, unfold, normalization, weighting
|
657 |
+
|
658 |
+
@torch.no_grad()
|
659 |
+
def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False,
|
660 |
+
cond_key=None, return_original_cond=False, bs=None):
|
661 |
+
x = super().get_input(batch, k)
|
662 |
+
if bs is not None:
|
663 |
+
x = x[:bs]
|
664 |
+
x = x.to(self.device)
|
665 |
+
encoder_posterior = self.encode_first_stage(x)
|
666 |
+
z = self.get_first_stage_encoding(encoder_posterior).detach()
|
667 |
+
|
668 |
+
if self.model.conditioning_key is not None:
|
669 |
+
if cond_key is None:
|
670 |
+
cond_key = self.cond_stage_key
|
671 |
+
if cond_key != self.first_stage_key:
|
672 |
+
if cond_key in ['caption', 'coordinates_bbox']:
|
673 |
+
xc = batch[cond_key]
|
674 |
+
elif cond_key == 'class_label':
|
675 |
+
xc = batch
|
676 |
+
else:
|
677 |
+
xc = super().get_input(batch, cond_key).to(self.device)
|
678 |
+
else:
|
679 |
+
xc = x
|
680 |
+
if not self.cond_stage_trainable or force_c_encode:
|
681 |
+
if isinstance(xc, dict) or isinstance(xc, list):
|
682 |
+
# import pudb; pudb.set_trace()
|
683 |
+
c = self.get_learned_conditioning(xc)
|
684 |
+
else:
|
685 |
+
c = self.get_learned_conditioning(xc.to(self.device))
|
686 |
+
else:
|
687 |
+
c = xc
|
688 |
+
if bs is not None:
|
689 |
+
c = c[:bs]
|
690 |
+
|
691 |
+
if self.use_positional_encodings:
|
692 |
+
pos_x, pos_y = self.compute_latent_shifts(batch)
|
693 |
+
ckey = __conditioning_keys__[self.model.conditioning_key]
|
694 |
+
c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y}
|
695 |
+
|
696 |
+
else:
|
697 |
+
c = None
|
698 |
+
xc = None
|
699 |
+
if self.use_positional_encodings:
|
700 |
+
pos_x, pos_y = self.compute_latent_shifts(batch)
|
701 |
+
c = {'pos_x': pos_x, 'pos_y': pos_y}
|
702 |
+
out = [z, c]
|
703 |
+
if return_first_stage_outputs:
|
704 |
+
xrec = self.decode_first_stage(z)
|
705 |
+
out.extend([x, xrec])
|
706 |
+
if return_original_cond:
|
707 |
+
out.append(xc)
|
708 |
+
return out
|
709 |
+
|
710 |
+
@torch.no_grad()
|
711 |
+
def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
|
712 |
+
if predict_cids:
|
713 |
+
if z.dim() == 4:
|
714 |
+
z = torch.argmax(z.exp(), dim=1).long()
|
715 |
+
z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
|
716 |
+
z = rearrange(z, 'b h w c -> b c h w').contiguous()
|
717 |
+
|
718 |
+
z = 1. / self.scale_factor * z
|
719 |
+
|
720 |
+
if hasattr(self, "split_input_params"):
|
721 |
+
if self.split_input_params["patch_distributed_vq"]:
|
722 |
+
ks = self.split_input_params["ks"] # eg. (128, 128)
|
723 |
+
stride = self.split_input_params["stride"] # eg. (64, 64)
|
724 |
+
uf = self.split_input_params["vqf"]
|
725 |
+
bs, nc, h, w = z.shape
|
726 |
+
if ks[0] > h or ks[1] > w:
|
727 |
+
ks = (min(ks[0], h), min(ks[1], w))
|
728 |
+
print("reducing Kernel")
|
729 |
+
|
730 |
+
if stride[0] > h or stride[1] > w:
|
731 |
+
stride = (min(stride[0], h), min(stride[1], w))
|
732 |
+
print("reducing stride")
|
733 |
+
|
734 |
+
fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)
|
735 |
+
|
736 |
+
z = unfold(z) # (bn, nc * prod(**ks), L)
|
737 |
+
# 1. Reshape to img shape
|
738 |
+
z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
739 |
+
|
740 |
+
# 2. apply model loop over last dim
|
741 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
742 |
+
output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
|
743 |
+
force_not_quantize=predict_cids or force_not_quantize)
|
744 |
+
for i in range(z.shape[-1])]
|
745 |
+
else:
|
746 |
+
|
747 |
+
output_list = [self.first_stage_model.decode(z[:, :, :, :, i])
|
748 |
+
for i in range(z.shape[-1])]
|
749 |
+
|
750 |
+
o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L)
|
751 |
+
o = o * weighting
|
752 |
+
# Reverse 1. reshape to img shape
|
753 |
+
o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
|
754 |
+
# stitch crops together
|
755 |
+
decoded = fold(o)
|
756 |
+
decoded = decoded / normalization # norm is shape (1, 1, h, w)
|
757 |
+
return decoded
|
758 |
+
else:
|
759 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
760 |
+
return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
|
761 |
+
else:
|
762 |
+
return self.first_stage_model.decode(z)
|
763 |
+
|
764 |
+
else:
|
765 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
766 |
+
return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
|
767 |
+
else:
|
768 |
+
return self.first_stage_model.decode(z)
|
769 |
+
|
770 |
+
# same as above but without decorator
|
771 |
+
def differentiable_decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
|
772 |
+
if predict_cids:
|
773 |
+
if z.dim() == 4:
|
774 |
+
z = torch.argmax(z.exp(), dim=1).long()
|
775 |
+
z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
|
776 |
+
z = rearrange(z, 'b h w c -> b c h w').contiguous()
|
777 |
+
|
778 |
+
z = 1. / self.scale_factor * z
|
779 |
+
|
780 |
+
if hasattr(self, "split_input_params"):
|
781 |
+
if self.split_input_params["patch_distributed_vq"]:
|
782 |
+
ks = self.split_input_params["ks"] # eg. (128, 128)
|
783 |
+
stride = self.split_input_params["stride"] # eg. (64, 64)
|
784 |
+
uf = self.split_input_params["vqf"]
|
785 |
+
bs, nc, h, w = z.shape
|
786 |
+
if ks[0] > h or ks[1] > w:
|
787 |
+
ks = (min(ks[0], h), min(ks[1], w))
|
788 |
+
print("reducing Kernel")
|
789 |
+
|
790 |
+
if stride[0] > h or stride[1] > w:
|
791 |
+
stride = (min(stride[0], h), min(stride[1], w))
|
792 |
+
print("reducing stride")
|
793 |
+
|
794 |
+
fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)
|
795 |
+
|
796 |
+
z = unfold(z) # (bn, nc * prod(**ks), L)
|
797 |
+
# 1. Reshape to img shape
|
798 |
+
z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
799 |
+
|
800 |
+
# 2. apply model loop over last dim
|
801 |
+
if isinstance(self.first_stage_model, VQModelInterface): # todo ask what this is
|
802 |
+
output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
|
803 |
+
force_not_quantize=predict_cids or force_not_quantize)
|
804 |
+
for i in range(z.shape[-1])]
|
805 |
+
else:
|
806 |
+
|
807 |
+
output_list = [self.first_stage_model.decode(z[:, :, :, :, i])
|
808 |
+
for i in range(z.shape[-1])]
|
809 |
+
|
810 |
+
o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L)
|
811 |
+
o = o * weighting
|
812 |
+
# Reverse 1. reshape to img shape
|
813 |
+
o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
|
814 |
+
# stitch crops together
|
815 |
+
decoded = fold(o)
|
816 |
+
decoded = decoded / normalization # norm is shape (1, 1, h, w)
|
817 |
+
return decoded
|
818 |
+
else:
|
819 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
820 |
+
return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
|
821 |
+
else:
|
822 |
+
return self.first_stage_model.decode(z)
|
823 |
+
|
824 |
+
else:
|
825 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
826 |
+
return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
|
827 |
+
else:
|
828 |
+
return self.first_stage_model.decode(z)
|
829 |
+
|
830 |
+
@torch.no_grad()
|
831 |
+
def encode_first_stage(self, x):
|
832 |
+
if hasattr(self, "split_input_params"):
|
833 |
+
if self.split_input_params["patch_distributed_vq"]:
|
834 |
+
ks = self.split_input_params["ks"] # eg. (128, 128)
|
835 |
+
stride = self.split_input_params["stride"] # eg. (64, 64)
|
836 |
+
df = self.split_input_params["vqf"]
|
837 |
+
self.split_input_params['original_image_size'] = x.shape[-2:]
|
838 |
+
bs, nc, h, w = x.shape
|
839 |
+
if ks[0] > h or ks[1] > w:
|
840 |
+
ks = (min(ks[0], h), min(ks[1], w))
|
841 |
+
print("reducing Kernel")
|
842 |
+
|
843 |
+
if stride[0] > h or stride[1] > w:
|
844 |
+
stride = (min(stride[0], h), min(stride[1], w))
|
845 |
+
print("reducing stride")
|
846 |
+
|
847 |
+
fold, unfold, normalization, weighting = self.get_fold_unfold(x, ks, stride, df=df)
|
848 |
+
z = unfold(x) # (bn, nc * prod(**ks), L)
|
849 |
+
# Reshape to img shape
|
850 |
+
z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
851 |
+
|
852 |
+
output_list = [self.first_stage_model.encode(z[:, :, :, :, i])
|
853 |
+
for i in range(z.shape[-1])]
|
854 |
+
|
855 |
+
o = torch.stack(output_list, axis=-1)
|
856 |
+
o = o * weighting
|
857 |
+
|
858 |
+
# Reverse reshape to img shape
|
859 |
+
o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
|
860 |
+
# stitch crops together
|
861 |
+
decoded = fold(o)
|
862 |
+
decoded = decoded / normalization
|
863 |
+
return decoded
|
864 |
+
|
865 |
+
else:
|
866 |
+
return self.first_stage_model.encode(x)
|
867 |
+
else:
|
868 |
+
return self.first_stage_model.encode(x)
|
869 |
+
|
870 |
+
def shared_step(self, batch, **kwargs):
|
871 |
+
x, c = self.get_input(batch, self.first_stage_key)
|
872 |
+
loss = self(x, c)
|
873 |
+
return loss
|
874 |
+
|
875 |
+
def forward(self, x, c, *args, **kwargs):
|
876 |
+
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
|
877 |
+
if self.model.conditioning_key is not None:
|
878 |
+
assert c is not None
|
879 |
+
if self.cond_stage_trainable:
|
880 |
+
c = self.get_learned_conditioning(c)
|
881 |
+
if self.shorten_cond_schedule: # TODO: drop this option
|
882 |
+
tc = self.cond_ids[t].to(self.device)
|
883 |
+
c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
|
884 |
+
return self.p_losses(x, c, t, *args, **kwargs)
|
885 |
+
|
886 |
+
def _rescale_annotations(self, bboxes, crop_coordinates): # TODO: move to dataset
|
887 |
+
def rescale_bbox(bbox):
|
888 |
+
x0 = clamp((bbox[0] - crop_coordinates[0]) / crop_coordinates[2])
|
889 |
+
y0 = clamp((bbox[1] - crop_coordinates[1]) / crop_coordinates[3])
|
890 |
+
w = min(bbox[2] / crop_coordinates[2], 1 - x0)
|
891 |
+
h = min(bbox[3] / crop_coordinates[3], 1 - y0)
|
892 |
+
return x0, y0, w, h
|
893 |
+
|
894 |
+
return [rescale_bbox(b) for b in bboxes]
|
895 |
+
|
896 |
+
def apply_model(self, x_noisy, t, cond, return_ids=False):
|
897 |
+
|
898 |
+
if isinstance(cond, dict):
|
899 |
+
# hybrid case, cond is exptected to be a dict
|
900 |
+
pass
|
901 |
+
else:
|
902 |
+
if not isinstance(cond, list):
|
903 |
+
cond = [cond]
|
904 |
+
key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
|
905 |
+
cond = {key: cond}
|
906 |
+
|
907 |
+
if hasattr(self, "split_input_params"):
|
908 |
+
assert len(cond) == 1 # todo can only deal with one conditioning atm
|
909 |
+
assert not return_ids # todo dont know what this is -> I exclude --> Good
|
910 |
+
ks = self.split_input_params["ks"] # eg. (128, 128)
|
911 |
+
stride = self.split_input_params["stride"] # eg. (64, 64)
|
912 |
+
|
913 |
+
h, w = x_noisy.shape[-2:]
|
914 |
+
|
915 |
+
fold, unfold, normalization, weighting = self.get_fold_unfold(x_noisy, ks, stride)
|
916 |
+
|
917 |
+
z = unfold(x_noisy) # (bn, nc * prod(**ks), L)
|
918 |
+
# Reshape to img shape
|
919 |
+
z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
920 |
+
z_list = [z[:, :, :, :, i] for i in range(z.shape[-1])]
|
921 |
+
|
922 |
+
if self.cond_stage_key in ["image", "LR_image", "segmentation",
|
923 |
+
'bbox_img'] and self.model.conditioning_key: # todo check for completeness
|
924 |
+
c_key = next(iter(cond.keys())) # get key
|
925 |
+
c = next(iter(cond.values())) # get value
|
926 |
+
assert (len(c) == 1) # todo extend to list with more than one elem
|
927 |
+
c = c[0] # get element
|
928 |
+
|
929 |
+
c = unfold(c)
|
930 |
+
c = c.view((c.shape[0], -1, ks[0], ks[1], c.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
931 |
+
|
932 |
+
cond_list = [{c_key: [c[:, :, :, :, i]]} for i in range(c.shape[-1])]
|
933 |
+
|
934 |
+
elif self.cond_stage_key == 'coordinates_bbox':
|
935 |
+
assert 'original_image_size' in self.split_input_params, 'BoudingBoxRescaling is missing original_image_size'
|
936 |
+
|
937 |
+
# assuming padding of unfold is always 0 and its dilation is always 1
|
938 |
+
n_patches_per_row = int((w - ks[0]) / stride[0] + 1)
|
939 |
+
full_img_h, full_img_w = self.split_input_params['original_image_size']
|
940 |
+
# as we are operating on latents, we need the factor from the original image size to the
|
941 |
+
# spatial latent size to properly rescale the crops for regenerating the bbox annotations
|
942 |
+
num_downs = self.first_stage_model.encoder.num_resolutions - 1
|
943 |
+
rescale_latent = 2 ** (num_downs)
|
944 |
+
|
945 |
+
# get top left postions of patches as conforming for the bbbox tokenizer, therefore we
|
946 |
+
# need to rescale the tl patch coordinates to be in between (0,1)
|
947 |
+
tl_patch_coordinates = [(rescale_latent * stride[0] * (patch_nr % n_patches_per_row) / full_img_w,
|
948 |
+
rescale_latent * stride[1] * (patch_nr // n_patches_per_row) / full_img_h)
|
949 |
+
for patch_nr in range(z.shape[-1])]
|
950 |
+
|
951 |
+
# patch_limits are tl_coord, width and height coordinates as (x_tl, y_tl, h, w)
|
952 |
+
patch_limits = [(x_tl, y_tl,
|
953 |
+
rescale_latent * ks[0] / full_img_w,
|
954 |
+
rescale_latent * ks[1] / full_img_h) for x_tl, y_tl in tl_patch_coordinates]
|
955 |
+
# patch_values = [(np.arange(x_tl,min(x_tl+ks, 1.)),np.arange(y_tl,min(y_tl+ks, 1.))) for x_tl, y_tl in tl_patch_coordinates]
|
956 |
+
|
957 |
+
# tokenize crop coordinates for the bounding boxes of the respective patches
|
958 |
+
patch_limits_tknzd = [torch.LongTensor(self.bbox_tokenizer._crop_encoder(bbox))[None].to(self.device)
|
959 |
+
for bbox in patch_limits] # list of length l with tensors of shape (1, 2)
|
960 |
+
print(patch_limits_tknzd[0].shape)
|
961 |
+
# cut tknzd crop position from conditioning
|
962 |
+
assert isinstance(cond, dict), 'cond must be dict to be fed into model'
|
963 |
+
cut_cond = cond['c_crossattn'][0][..., :-2].to(self.device)
|
964 |
+
print(cut_cond.shape)
|
965 |
+
|
966 |
+
adapted_cond = torch.stack([torch.cat([cut_cond, p], dim=1) for p in patch_limits_tknzd])
|
967 |
+
adapted_cond = rearrange(adapted_cond, 'l b n -> (l b) n')
|
968 |
+
print(adapted_cond.shape)
|
969 |
+
adapted_cond = self.get_learned_conditioning(adapted_cond)
|
970 |
+
print(adapted_cond.shape)
|
971 |
+
adapted_cond = rearrange(adapted_cond, '(l b) n d -> l b n d', l=z.shape[-1])
|
972 |
+
print(adapted_cond.shape)
|
973 |
+
|
974 |
+
cond_list = [{'c_crossattn': [e]} for e in adapted_cond]
|
975 |
+
|
976 |
+
else:
|
977 |
+
cond_list = [cond for i in range(z.shape[-1])] # Todo make this more efficient
|
978 |
+
|
979 |
+
# apply model by loop over crops
|
980 |
+
output_list = [self.model(z_list[i], t, **cond_list[i]) for i in range(z.shape[-1])]
|
981 |
+
assert not isinstance(output_list[0],
|
982 |
+
tuple) # todo cant deal with multiple model outputs check this never happens
|
983 |
+
|
984 |
+
o = torch.stack(output_list, axis=-1)
|
985 |
+
o = o * weighting
|
986 |
+
# Reverse reshape to img shape
|
987 |
+
o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
|
988 |
+
# stitch crops together
|
989 |
+
x_recon = fold(o) / normalization
|
990 |
+
|
991 |
+
else:
|
992 |
+
x_recon = self.model(x_noisy, t, **cond)
|
993 |
+
|
994 |
+
if isinstance(x_recon, tuple) and not return_ids:
|
995 |
+
return x_recon[0]
|
996 |
+
else:
|
997 |
+
return x_recon
|
998 |
+
|
999 |
+
def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
|
1000 |
+
return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \
|
1001 |
+
extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
|
1002 |
+
|
1003 |
+
def _prior_bpd(self, x_start):
|
1004 |
+
"""
|
1005 |
+
Get the prior KL term for the variational lower-bound, measured in
|
1006 |
+
bits-per-dim.
|
1007 |
+
This term can't be optimized, as it only depends on the encoder.
|
1008 |
+
:param x_start: the [N x C x ...] tensor of inputs.
|
1009 |
+
:return: a batch of [N] KL values (in bits), one per batch element.
|
1010 |
+
"""
|
1011 |
+
batch_size = x_start.shape[0]
|
1012 |
+
t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
|
1013 |
+
qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
|
1014 |
+
kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0)
|
1015 |
+
return mean_flat(kl_prior) / np.log(2.0)
|
1016 |
+
|
1017 |
+
def p_losses(self, x_start, cond, t, noise=None):
|
1018 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
1019 |
+
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
1020 |
+
model_output = self.apply_model(x_noisy, t, cond)
|
1021 |
+
|
1022 |
+
loss_dict = {}
|
1023 |
+
prefix = 'train' if self.training else 'val'
|
1024 |
+
|
1025 |
+
if self.parameterization == "x0":
|
1026 |
+
target = x_start
|
1027 |
+
elif self.parameterization == "eps":
|
1028 |
+
target = noise
|
1029 |
+
else:
|
1030 |
+
raise NotImplementedError()
|
1031 |
+
|
1032 |
+
loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3])
|
1033 |
+
loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})
|
1034 |
+
|
1035 |
+
logvar_t = self.logvar[t].to(self.device)
|
1036 |
+
loss = loss_simple / torch.exp(logvar_t) + logvar_t
|
1037 |
+
# loss = loss_simple / torch.exp(self.logvar) + self.logvar
|
1038 |
+
if self.learn_logvar:
|
1039 |
+
loss_dict.update({f'{prefix}/loss_gamma': loss.mean()})
|
1040 |
+
loss_dict.update({'logvar': self.logvar.data.mean()})
|
1041 |
+
|
1042 |
+
loss = self.l_simple_weight * loss.mean()
|
1043 |
+
|
1044 |
+
loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3))
|
1045 |
+
loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
|
1046 |
+
loss_dict.update({f'{prefix}/loss_vlb': loss_vlb})
|
1047 |
+
loss += (self.original_elbo_weight * loss_vlb)
|
1048 |
+
loss_dict.update({f'{prefix}/loss': loss})
|
1049 |
+
|
1050 |
+
return loss, loss_dict
|
1051 |
+
|
1052 |
+
def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False,
|
1053 |
+
return_x0=False, score_corrector=None, corrector_kwargs=None):
|
1054 |
+
t_in = t
|
1055 |
+
model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
|
1056 |
+
|
1057 |
+
if score_corrector is not None:
|
1058 |
+
assert self.parameterization == "eps"
|
1059 |
+
model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)
|
1060 |
+
|
1061 |
+
if return_codebook_ids:
|
1062 |
+
model_out, logits = model_out
|
1063 |
+
|
1064 |
+
if self.parameterization == "eps":
|
1065 |
+
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
|
1066 |
+
elif self.parameterization == "x0":
|
1067 |
+
x_recon = model_out
|
1068 |
+
else:
|
1069 |
+
raise NotImplementedError()
|
1070 |
+
|
1071 |
+
if clip_denoised:
|
1072 |
+
x_recon.clamp_(-1., 1.)
|
1073 |
+
if quantize_denoised:
|
1074 |
+
x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
|
1075 |
+
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
|
1076 |
+
if return_codebook_ids:
|
1077 |
+
return model_mean, posterior_variance, posterior_log_variance, logits
|
1078 |
+
elif return_x0:
|
1079 |
+
return model_mean, posterior_variance, posterior_log_variance, x_recon
|
1080 |
+
else:
|
1081 |
+
return model_mean, posterior_variance, posterior_log_variance
|
1082 |
+
|
1083 |
+
@torch.no_grad()
|
1084 |
+
def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False,
|
1085 |
+
return_codebook_ids=False, quantize_denoised=False, return_x0=False,
|
1086 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None):
|
1087 |
+
b, *_, device = *x.shape, x.device
|
1088 |
+
outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised,
|
1089 |
+
return_codebook_ids=return_codebook_ids,
|
1090 |
+
quantize_denoised=quantize_denoised,
|
1091 |
+
return_x0=return_x0,
|
1092 |
+
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
|
1093 |
+
if return_codebook_ids:
|
1094 |
+
raise DeprecationWarning("Support dropped.")
|
1095 |
+
model_mean, _, model_log_variance, logits = outputs
|
1096 |
+
elif return_x0:
|
1097 |
+
model_mean, _, model_log_variance, x0 = outputs
|
1098 |
+
else:
|
1099 |
+
model_mean, _, model_log_variance = outputs
|
1100 |
+
|
1101 |
+
noise = noise_like(x.shape, device, repeat_noise) * temperature
|
1102 |
+
if noise_dropout > 0.:
|
1103 |
+
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
1104 |
+
# no noise when t == 0
|
1105 |
+
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
1106 |
+
|
1107 |
+
if return_codebook_ids:
|
1108 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1)
|
1109 |
+
if return_x0:
|
1110 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
|
1111 |
+
else:
|
1112 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
1113 |
+
|
1114 |
+
@torch.no_grad()
|
1115 |
+
def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False,
|
1116 |
+
img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0.,
|
1117 |
+
score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None,
|
1118 |
+
log_every_t=None):
|
1119 |
+
if not log_every_t:
|
1120 |
+
log_every_t = self.log_every_t
|
1121 |
+
timesteps = self.num_timesteps
|
1122 |
+
if batch_size is not None:
|
1123 |
+
b = batch_size if batch_size is not None else shape[0]
|
1124 |
+
shape = [batch_size] + list(shape)
|
1125 |
+
else:
|
1126 |
+
b = batch_size = shape[0]
|
1127 |
+
if x_T is None:
|
1128 |
+
img = torch.randn(shape, device=self.device)
|
1129 |
+
else:
|
1130 |
+
img = x_T
|
1131 |
+
intermediates = []
|
1132 |
+
if cond is not None:
|
1133 |
+
if isinstance(cond, dict):
|
1134 |
+
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
|
1135 |
+
list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
|
1136 |
+
else:
|
1137 |
+
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
|
1138 |
+
|
1139 |
+
if start_T is not None:
|
1140 |
+
timesteps = min(timesteps, start_T)
|
1141 |
+
iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation',
|
1142 |
+
total=timesteps) if verbose else reversed(
|
1143 |
+
range(0, timesteps))
|
1144 |
+
if type(temperature) == float:
|
1145 |
+
temperature = [temperature] * timesteps
|
1146 |
+
|
1147 |
+
for i in iterator:
|
1148 |
+
ts = torch.full((b,), i, device=self.device, dtype=torch.long)
|
1149 |
+
if self.shorten_cond_schedule:
|
1150 |
+
assert self.model.conditioning_key != 'hybrid'
|
1151 |
+
tc = self.cond_ids[ts].to(cond.device)
|
1152 |
+
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
|
1153 |
+
|
1154 |
+
img, x0_partial = self.p_sample(img, cond, ts,
|
1155 |
+
clip_denoised=self.clip_denoised,
|
1156 |
+
quantize_denoised=quantize_denoised, return_x0=True,
|
1157 |
+
temperature=temperature[i], noise_dropout=noise_dropout,
|
1158 |
+
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
|
1159 |
+
if mask is not None:
|
1160 |
+
assert x0 is not None
|
1161 |
+
img_orig = self.q_sample(x0, ts)
|
1162 |
+
img = img_orig * mask + (1. - mask) * img
|
1163 |
+
|
1164 |
+
if i % log_every_t == 0 or i == timesteps - 1:
|
1165 |
+
intermediates.append(x0_partial)
|
1166 |
+
if callback: callback(i)
|
1167 |
+
if img_callback: img_callback(img, i)
|
1168 |
+
return img, intermediates
|
1169 |
+
|
1170 |
+
@torch.no_grad()
|
1171 |
+
def p_sample_loop(self, cond, shape, return_intermediates=False,
|
1172 |
+
x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False,
|
1173 |
+
mask=None, x0=None, img_callback=None, start_T=None,
|
1174 |
+
log_every_t=None):
|
1175 |
+
|
1176 |
+
if not log_every_t:
|
1177 |
+
log_every_t = self.log_every_t
|
1178 |
+
device = self.betas.device
|
1179 |
+
b = shape[0]
|
1180 |
+
if x_T is None:
|
1181 |
+
img = torch.randn(shape, device=device)
|
1182 |
+
else:
|
1183 |
+
img = x_T
|
1184 |
+
|
1185 |
+
intermediates = [img]
|
1186 |
+
if timesteps is None:
|
1187 |
+
timesteps = self.num_timesteps
|
1188 |
+
|
1189 |
+
if start_T is not None:
|
1190 |
+
timesteps = min(timesteps, start_T)
|
1191 |
+
print(timesteps, start_T)
|
1192 |
+
iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(
|
1193 |
+
range(0, timesteps))
|
1194 |
+
|
1195 |
+
if mask is not None:
|
1196 |
+
assert x0 is not None
|
1197 |
+
assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match
|
1198 |
+
|
1199 |
+
for i in iterator:
|
1200 |
+
ts = torch.full((b,), i, device=device, dtype=torch.long)
|
1201 |
+
if self.shorten_cond_schedule:
|
1202 |
+
assert self.model.conditioning_key != 'hybrid'
|
1203 |
+
tc = self.cond_ids[ts].to(cond.device)
|
1204 |
+
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
|
1205 |
+
|
1206 |
+
img = self.p_sample(img, cond, ts,
|
1207 |
+
clip_denoised=self.clip_denoised,
|
1208 |
+
quantize_denoised=quantize_denoised)
|
1209 |
+
if mask is not None:
|
1210 |
+
img_orig = self.q_sample(x0, ts)
|
1211 |
+
img = img_orig * mask + (1. - mask) * img
|
1212 |
+
|
1213 |
+
if i % log_every_t == 0 or i == timesteps - 1:
|
1214 |
+
intermediates.append(img)
|
1215 |
+
if callback: callback(i)
|
1216 |
+
if img_callback: img_callback(img, i)
|
1217 |
+
|
1218 |
+
if return_intermediates:
|
1219 |
+
return img, intermediates
|
1220 |
+
return img
|
1221 |
+
|
1222 |
+
@torch.no_grad()
|
1223 |
+
def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None,
|
1224 |
+
verbose=True, timesteps=None, quantize_denoised=False,
|
1225 |
+
mask=None, x0=None, shape=None):
|
1226 |
+
if shape is None:
|
1227 |
+
shape = (batch_size, self.channels, self.image_size, self.image_size)
|
1228 |
+
if cond is not None:
|
1229 |
+
if isinstance(cond, dict):
|
1230 |
+
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
|
1231 |
+
list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
|
1232 |
+
else:
|
1233 |
+
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
|
1234 |
+
return self.p_sample_loop(cond,
|
1235 |
+
shape,
|
1236 |
+
return_intermediates=return_intermediates, x_T=x_T,
|
1237 |
+
verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised,
|
1238 |
+
mask=mask, x0=x0)
|
1239 |
+
|
1240 |
+
@torch.no_grad()
|
1241 |
+
def log_images(self, batch, N=8, n_row=4, sample=True, sample_ddim=False, return_keys=None,
|
1242 |
+
quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
|
1243 |
+
plot_diffusion_rows=True, **kwargs):
|
1244 |
+
# TODO: maybe add option for ddim sampling via DDIMSampler class
|
1245 |
+
log = dict()
|
1246 |
+
z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key,
|
1247 |
+
return_first_stage_outputs=True,
|
1248 |
+
force_c_encode=True,
|
1249 |
+
return_original_cond=True,
|
1250 |
+
bs=N)
|
1251 |
+
N = min(x.shape[0], N)
|
1252 |
+
n_row = min(x.shape[0], n_row)
|
1253 |
+
log["inputs"] = x
|
1254 |
+
log["reconstruction"] = xrec
|
1255 |
+
if self.model.conditioning_key is not None:
|
1256 |
+
if hasattr(self.cond_stage_model, "decode"):
|
1257 |
+
xc = self.cond_stage_model.decode(c)
|
1258 |
+
log["conditioning"] = xc
|
1259 |
+
elif self.cond_stage_key in ["caption"]:
|
1260 |
+
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["caption"])
|
1261 |
+
log["conditioning"] = xc
|
1262 |
+
elif self.cond_stage_key == 'class_label':
|
1263 |
+
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
|
1264 |
+
log['conditioning'] = xc
|
1265 |
+
elif isimage(xc):
|
1266 |
+
log["conditioning"] = xc
|
1267 |
+
if ismap(xc):
|
1268 |
+
log["original_conditioning"] = self.to_rgb(xc)
|
1269 |
+
|
1270 |
+
if plot_diffusion_rows:
|
1271 |
+
# get diffusion row
|
1272 |
+
diffusion_row = list()
|
1273 |
+
z_start = z[:n_row]
|
1274 |
+
for t in range(self.num_timesteps):
|
1275 |
+
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
1276 |
+
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
|
1277 |
+
t = t.to(self.device).long()
|
1278 |
+
noise = torch.randn_like(z_start)
|
1279 |
+
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
|
1280 |
+
diffusion_row.append(self.decode_first_stage(z_noisy))
|
1281 |
+
|
1282 |
+
diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
|
1283 |
+
diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
|
1284 |
+
diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
|
1285 |
+
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
|
1286 |
+
log["diffusion_row"] = diffusion_grid
|
1287 |
+
|
1288 |
+
if sample:
|
1289 |
+
# get denoise row
|
1290 |
+
with self.ema_scope("Plotting"):
|
1291 |
+
samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
|
1292 |
+
x_samples = self.decode_first_stage(samples)
|
1293 |
+
log["samples"] = x_samples
|
1294 |
+
if plot_denoise_rows:
|
1295 |
+
denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
|
1296 |
+
log["denoise_row"] = denoise_grid
|
1297 |
+
|
1298 |
+
if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance(
|
1299 |
+
self.first_stage_model, IdentityFirstStage):
|
1300 |
+
# also display when quantizing x0 while sampling
|
1301 |
+
with self.ema_scope("Plotting Quantized Denoised"):
|
1302 |
+
samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True,
|
1303 |
+
quantize_denoised=True)
|
1304 |
+
x_samples = self.decode_first_stage(samples.to(self.device))
|
1305 |
+
log["samples_x0_quantized"] = x_samples
|
1306 |
+
|
1307 |
+
if inpaint:
|
1308 |
+
# make a simple center square
|
1309 |
+
b, h, w = z.shape[0], z.shape[2], z.shape[3]
|
1310 |
+
mask = torch.ones(N, h, w).to(self.device)
|
1311 |
+
# zeros will be filled in
|
1312 |
+
mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0.
|
1313 |
+
mask = mask[:, None, ...]
|
1314 |
+
with self.ema_scope("Plotting Inpaint"):
|
1315 |
+
samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True,
|
1316 |
+
quantize_denoised=False, x0=z[:N], mask=mask)
|
1317 |
+
x_samples = self.decode_first_stage(samples.to(self.device))
|
1318 |
+
log["samples_inpainting"] = x_samples
|
1319 |
+
log["mask"] = mask
|
1320 |
+
if plot_denoise_rows:
|
1321 |
+
denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
|
1322 |
+
log["denoise_row_inpainting"] = denoise_grid
|
1323 |
+
|
1324 |
+
# outpaint
|
1325 |
+
with self.ema_scope("Plotting Outpaint"):
|
1326 |
+
samples = self.sample(cond=c, batch_size=N, return_intermediates=False,
|
1327 |
+
quantize_denoised=False, x0=z[:N], mask=1. - mask)
|
1328 |
+
x_samples = self.decode_first_stage(samples.to(self.device))
|
1329 |
+
log["samples_outpainting"] = x_samples
|
1330 |
+
|
1331 |
+
if plot_progressive_rows:
|
1332 |
+
with self.ema_scope("Plotting Progressives"):
|
1333 |
+
img, progressives = self.progressive_denoising(c,
|
1334 |
+
shape=(self.channels, self.image_size, self.image_size),
|
1335 |
+
batch_size=N)
|
1336 |
+
prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
|
1337 |
+
log["progressive_row"] = prog_row
|
1338 |
+
|
1339 |
+
if return_keys:
|
1340 |
+
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
|
1341 |
+
return log
|
1342 |
+
else:
|
1343 |
+
return {key: log[key] for key in return_keys}
|
1344 |
+
return log
|
1345 |
+
|
1346 |
+
def configure_optimizers(self):
|
1347 |
+
lr = self.learning_rate
|
1348 |
+
params = list(self.model.parameters())
|
1349 |
+
if self.cond_stage_trainable:
|
1350 |
+
print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
|
1351 |
+
params = params + list(self.cond_stage_model.parameters())
|
1352 |
+
if self.learn_logvar:
|
1353 |
+
print('Diffusion model optimizing logvar')
|
1354 |
+
params.append(self.logvar)
|
1355 |
+
opt = torch.optim.AdamW(params, lr=lr)
|
1356 |
+
if self.use_scheduler:
|
1357 |
+
assert 'target' in self.scheduler_config
|
1358 |
+
scheduler = instantiate_from_config(self.scheduler_config)
|
1359 |
+
|
1360 |
+
print("Setting up LambdaLR scheduler...")
|
1361 |
+
scheduler = [
|
1362 |
+
{
|
1363 |
+
'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule),
|
1364 |
+
'interval': 'step',
|
1365 |
+
'frequency': 1
|
1366 |
+
}]
|
1367 |
+
return [opt], scheduler
|
1368 |
+
return opt
|
1369 |
+
|
1370 |
+
@torch.no_grad()
|
1371 |
+
def to_rgb(self, x):
|
1372 |
+
x = x.float()
|
1373 |
+
if not hasattr(self, "colorize"):
|
1374 |
+
self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x)
|
1375 |
+
x = nn.functional.conv2d(x, weight=self.colorize)
|
1376 |
+
x = 2. * (x - x.min()) / (x.max() - x.min()) - 1.
|
1377 |
+
return x
|
1378 |
+
|
1379 |
+
|
1380 |
+
class DiffusionWrapper(pl.LightningModule):
|
1381 |
+
def __init__(self, diff_model_config, conditioning_key):
|
1382 |
+
super().__init__()
|
1383 |
+
self.diffusion_model = instantiate_from_config(diff_model_config)
|
1384 |
+
self.conditioning_key = conditioning_key
|
1385 |
+
assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm']
|
1386 |
+
|
1387 |
+
def forward(self, x, t, c_concat: list = None, c_crossattn: list = None):
|
1388 |
+
if self.conditioning_key is None:
|
1389 |
+
out = self.diffusion_model(x, t)
|
1390 |
+
elif self.conditioning_key == 'concat':
|
1391 |
+
xc = torch.cat([x] + c_concat, dim=1)
|
1392 |
+
out = self.diffusion_model(xc, t)
|
1393 |
+
elif self.conditioning_key == 'crossattn':
|
1394 |
+
cc = torch.cat(c_crossattn, 1)
|
1395 |
+
out = self.diffusion_model(x, t, context=cc)
|
1396 |
+
elif self.conditioning_key == 'hybrid':
|
1397 |
+
xc = torch.cat([x] + c_concat, dim=1)
|
1398 |
+
cc = torch.cat(c_crossattn, 1)
|
1399 |
+
out = self.diffusion_model(xc, t, context=cc)
|
1400 |
+
elif self.conditioning_key == 'adm':
|
1401 |
+
cc = c_crossattn[0]
|
1402 |
+
out = self.diffusion_model(x, t, y=cc)
|
1403 |
+
else:
|
1404 |
+
raise NotImplementedError()
|
1405 |
+
|
1406 |
+
return out
|
1407 |
+
|
1408 |
+
|
1409 |
+
class Layout2ImgDiffusion(LatentDiffusion):
|
1410 |
+
# TODO: move all layout-specific hacks to this class
|
1411 |
+
def __init__(self, cond_stage_key, *args, **kwargs):
|
1412 |
+
assert cond_stage_key == 'coordinates_bbox', 'Layout2ImgDiffusion only for cond_stage_key="coordinates_bbox"'
|
1413 |
+
super().__init__(cond_stage_key=cond_stage_key, *args, **kwargs)
|
1414 |
+
|
1415 |
+
def log_images(self, batch, N=8, *args, **kwargs):
|
1416 |
+
logs = super().log_images(batch=batch, N=N, *args, **kwargs)
|
1417 |
+
|
1418 |
+
key = 'train' if self.training else 'validation'
|
1419 |
+
dset = self.trainer.datamodule.datasets[key]
|
1420 |
+
mapper = dset.conditional_builders[self.cond_stage_key]
|
1421 |
+
|
1422 |
+
bbox_imgs = []
|
1423 |
+
map_fn = lambda catno: dset.get_textual_label(dset.get_category_id(catno))
|
1424 |
+
for tknzd_bbox in batch[self.cond_stage_key][:N]:
|
1425 |
+
bboximg = mapper.plot(tknzd_bbox.detach().cpu(), map_fn, (256, 256))
|
1426 |
+
bbox_imgs.append(bboximg)
|
1427 |
+
|
1428 |
+
cond_img = torch.stack(bbox_imgs, dim=0)
|
1429 |
+
logs['bbox_image'] = cond_img
|
1430 |
+
return logs
|
ldm/modules/attention.py
ADDED
@@ -0,0 +1,261 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from inspect import isfunction
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from torch import nn, einsum
|
6 |
+
from einops import rearrange, repeat
|
7 |
+
|
8 |
+
from ldm.modules.diffusionmodules.util import checkpoint
|
9 |
+
|
10 |
+
|
11 |
+
def exists(val):
|
12 |
+
return val is not None
|
13 |
+
|
14 |
+
|
15 |
+
def uniq(arr):
|
16 |
+
return{el: True for el in arr}.keys()
|
17 |
+
|
18 |
+
|
19 |
+
def default(val, d):
|
20 |
+
if exists(val):
|
21 |
+
return val
|
22 |
+
return d() if isfunction(d) else d
|
23 |
+
|
24 |
+
|
25 |
+
def max_neg_value(t):
|
26 |
+
return -torch.finfo(t.dtype).max
|
27 |
+
|
28 |
+
|
29 |
+
def init_(tensor):
|
30 |
+
dim = tensor.shape[-1]
|
31 |
+
std = 1 / math.sqrt(dim)
|
32 |
+
tensor.uniform_(-std, std)
|
33 |
+
return tensor
|
34 |
+
|
35 |
+
|
36 |
+
# feedforward
|
37 |
+
class GEGLU(nn.Module):
|
38 |
+
def __init__(self, dim_in, dim_out):
|
39 |
+
super().__init__()
|
40 |
+
self.proj = nn.Linear(dim_in, dim_out * 2)
|
41 |
+
|
42 |
+
def forward(self, x):
|
43 |
+
x, gate = self.proj(x).chunk(2, dim=-1)
|
44 |
+
return x * F.gelu(gate)
|
45 |
+
|
46 |
+
|
47 |
+
class FeedForward(nn.Module):
|
48 |
+
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
|
49 |
+
super().__init__()
|
50 |
+
inner_dim = int(dim * mult)
|
51 |
+
dim_out = default(dim_out, dim)
|
52 |
+
project_in = nn.Sequential(
|
53 |
+
nn.Linear(dim, inner_dim),
|
54 |
+
nn.GELU()
|
55 |
+
) if not glu else GEGLU(dim, inner_dim)
|
56 |
+
|
57 |
+
self.net = nn.Sequential(
|
58 |
+
project_in,
|
59 |
+
nn.Dropout(dropout),
|
60 |
+
nn.Linear(inner_dim, dim_out)
|
61 |
+
)
|
62 |
+
|
63 |
+
def forward(self, x):
|
64 |
+
return self.net(x)
|
65 |
+
|
66 |
+
|
67 |
+
def zero_module(module):
|
68 |
+
"""
|
69 |
+
Zero out the parameters of a module and return it.
|
70 |
+
"""
|
71 |
+
for p in module.parameters():
|
72 |
+
p.detach().zero_()
|
73 |
+
return module
|
74 |
+
|
75 |
+
|
76 |
+
def Normalize(in_channels):
|
77 |
+
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
78 |
+
|
79 |
+
|
80 |
+
class LinearAttention(nn.Module):
|
81 |
+
def __init__(self, dim, heads=4, dim_head=32):
|
82 |
+
super().__init__()
|
83 |
+
self.heads = heads
|
84 |
+
hidden_dim = dim_head * heads
|
85 |
+
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False)
|
86 |
+
self.to_out = nn.Conv2d(hidden_dim, dim, 1)
|
87 |
+
|
88 |
+
def forward(self, x):
|
89 |
+
b, c, h, w = x.shape
|
90 |
+
qkv = self.to_qkv(x)
|
91 |
+
q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3)
|
92 |
+
k = k.softmax(dim=-1)
|
93 |
+
context = torch.einsum('bhdn,bhen->bhde', k, v)
|
94 |
+
out = torch.einsum('bhde,bhdn->bhen', context, q)
|
95 |
+
out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w)
|
96 |
+
return self.to_out(out)
|
97 |
+
|
98 |
+
|
99 |
+
class SpatialSelfAttention(nn.Module):
|
100 |
+
def __init__(self, in_channels):
|
101 |
+
super().__init__()
|
102 |
+
self.in_channels = in_channels
|
103 |
+
|
104 |
+
self.norm = Normalize(in_channels)
|
105 |
+
self.q = torch.nn.Conv2d(in_channels,
|
106 |
+
in_channels,
|
107 |
+
kernel_size=1,
|
108 |
+
stride=1,
|
109 |
+
padding=0)
|
110 |
+
self.k = torch.nn.Conv2d(in_channels,
|
111 |
+
in_channels,
|
112 |
+
kernel_size=1,
|
113 |
+
stride=1,
|
114 |
+
padding=0)
|
115 |
+
self.v = torch.nn.Conv2d(in_channels,
|
116 |
+
in_channels,
|
117 |
+
kernel_size=1,
|
118 |
+
stride=1,
|
119 |
+
padding=0)
|
120 |
+
self.proj_out = torch.nn.Conv2d(in_channels,
|
121 |
+
in_channels,
|
122 |
+
kernel_size=1,
|
123 |
+
stride=1,
|
124 |
+
padding=0)
|
125 |
+
|
126 |
+
def forward(self, x):
|
127 |
+
h_ = x
|
128 |
+
h_ = self.norm(h_)
|
129 |
+
q = self.q(h_)
|
130 |
+
k = self.k(h_)
|
131 |
+
v = self.v(h_)
|
132 |
+
|
133 |
+
# compute attention
|
134 |
+
b,c,h,w = q.shape
|
135 |
+
q = rearrange(q, 'b c h w -> b (h w) c')
|
136 |
+
k = rearrange(k, 'b c h w -> b c (h w)')
|
137 |
+
w_ = torch.einsum('bij,bjk->bik', q, k)
|
138 |
+
|
139 |
+
w_ = w_ * (int(c)**(-0.5))
|
140 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
141 |
+
|
142 |
+
# attend to values
|
143 |
+
v = rearrange(v, 'b c h w -> b c (h w)')
|
144 |
+
w_ = rearrange(w_, 'b i j -> b j i')
|
145 |
+
h_ = torch.einsum('bij,bjk->bik', v, w_)
|
146 |
+
h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
|
147 |
+
h_ = self.proj_out(h_)
|
148 |
+
|
149 |
+
return x+h_
|
150 |
+
|
151 |
+
|
152 |
+
class CrossAttention(nn.Module):
|
153 |
+
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
|
154 |
+
super().__init__()
|
155 |
+
inner_dim = dim_head * heads
|
156 |
+
context_dim = default(context_dim, query_dim)
|
157 |
+
|
158 |
+
self.scale = dim_head ** -0.5
|
159 |
+
self.heads = heads
|
160 |
+
|
161 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
162 |
+
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
163 |
+
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
164 |
+
|
165 |
+
self.to_out = nn.Sequential(
|
166 |
+
nn.Linear(inner_dim, query_dim),
|
167 |
+
nn.Dropout(dropout)
|
168 |
+
)
|
169 |
+
|
170 |
+
def forward(self, x, context=None, mask=None):
|
171 |
+
h = self.heads
|
172 |
+
|
173 |
+
q = self.to_q(x)
|
174 |
+
context = default(context, x)
|
175 |
+
k = self.to_k(context)
|
176 |
+
v = self.to_v(context)
|
177 |
+
|
178 |
+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
179 |
+
|
180 |
+
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
181 |
+
|
182 |
+
if exists(mask):
|
183 |
+
mask = rearrange(mask, 'b ... -> b (...)')
|
184 |
+
max_neg_value = -torch.finfo(sim.dtype).max
|
185 |
+
mask = repeat(mask, 'b j -> (b h) () j', h=h)
|
186 |
+
sim.masked_fill_(~mask, max_neg_value)
|
187 |
+
|
188 |
+
# attention, what we cannot get enough of
|
189 |
+
attn = sim.softmax(dim=-1)
|
190 |
+
|
191 |
+
out = einsum('b i j, b j d -> b i d', attn, v)
|
192 |
+
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
|
193 |
+
return self.to_out(out)
|
194 |
+
|
195 |
+
|
196 |
+
class BasicTransformerBlock(nn.Module):
|
197 |
+
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True):
|
198 |
+
super().__init__()
|
199 |
+
self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout) # is a self-attention
|
200 |
+
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
201 |
+
self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim,
|
202 |
+
heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none
|
203 |
+
self.norm1 = nn.LayerNorm(dim)
|
204 |
+
self.norm2 = nn.LayerNorm(dim)
|
205 |
+
self.norm3 = nn.LayerNorm(dim)
|
206 |
+
self.checkpoint = checkpoint
|
207 |
+
|
208 |
+
def forward(self, x, context=None):
|
209 |
+
return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
|
210 |
+
|
211 |
+
def _forward(self, x, context=None):
|
212 |
+
x = self.attn1(self.norm1(x)) + x
|
213 |
+
x = self.attn2(self.norm2(x), context=context) + x
|
214 |
+
x = self.ff(self.norm3(x)) + x
|
215 |
+
return x
|
216 |
+
|
217 |
+
|
218 |
+
class SpatialTransformer(nn.Module):
|
219 |
+
"""
|
220 |
+
Transformer block for image-like data.
|
221 |
+
First, project the input (aka embedding)
|
222 |
+
and reshape to b, t, d.
|
223 |
+
Then apply standard transformer action.
|
224 |
+
Finally, reshape to image
|
225 |
+
"""
|
226 |
+
def __init__(self, in_channels, n_heads, d_head,
|
227 |
+
depth=1, dropout=0., context_dim=None):
|
228 |
+
super().__init__()
|
229 |
+
self.in_channels = in_channels
|
230 |
+
inner_dim = n_heads * d_head
|
231 |
+
self.norm = Normalize(in_channels)
|
232 |
+
|
233 |
+
self.proj_in = nn.Conv2d(in_channels,
|
234 |
+
inner_dim,
|
235 |
+
kernel_size=1,
|
236 |
+
stride=1,
|
237 |
+
padding=0)
|
238 |
+
|
239 |
+
self.transformer_blocks = nn.ModuleList(
|
240 |
+
[BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim)
|
241 |
+
for d in range(depth)]
|
242 |
+
)
|
243 |
+
|
244 |
+
self.proj_out = zero_module(nn.Conv2d(inner_dim,
|
245 |
+
in_channels,
|
246 |
+
kernel_size=1,
|
247 |
+
stride=1,
|
248 |
+
padding=0))
|
249 |
+
|
250 |
+
def forward(self, x, context=None):
|
251 |
+
# note: if no context is given, cross-attention defaults to self-attention
|
252 |
+
b, c, h, w = x.shape
|
253 |
+
x_in = x
|
254 |
+
x = self.norm(x)
|
255 |
+
x = self.proj_in(x)
|
256 |
+
x = rearrange(x, 'b c h w -> b (h w) c')
|
257 |
+
for block in self.transformer_blocks:
|
258 |
+
x = block(x, context=context)
|
259 |
+
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w)
|
260 |
+
x = self.proj_out(x)
|
261 |
+
return x + x_in
|
ldm/modules/diffusionmodules/__init__.py
ADDED
File without changes
|
ldm/modules/diffusionmodules/model.py
ADDED
@@ -0,0 +1,835 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# pytorch_diffusion + derived encoder decoder
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import numpy as np
|
6 |
+
from einops import rearrange
|
7 |
+
|
8 |
+
from ldm.util import instantiate_from_config
|
9 |
+
from ldm.modules.attention import LinearAttention
|
10 |
+
|
11 |
+
|
12 |
+
def get_timestep_embedding(timesteps, embedding_dim):
|
13 |
+
"""
|
14 |
+
This matches the implementation in Denoising Diffusion Probabilistic Models:
|
15 |
+
From Fairseq.
|
16 |
+
Build sinusoidal embeddings.
|
17 |
+
This matches the implementation in tensor2tensor, but differs slightly
|
18 |
+
from the description in Section 3.5 of "Attention Is All You Need".
|
19 |
+
"""
|
20 |
+
assert len(timesteps.shape) == 1
|
21 |
+
|
22 |
+
half_dim = embedding_dim // 2
|
23 |
+
emb = math.log(10000) / (half_dim - 1)
|
24 |
+
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
|
25 |
+
emb = emb.to(device=timesteps.device)
|
26 |
+
emb = timesteps.float()[:, None] * emb[None, :]
|
27 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
28 |
+
if embedding_dim % 2 == 1: # zero pad
|
29 |
+
emb = torch.nn.functional.pad(emb, (0,1,0,0))
|
30 |
+
return emb
|
31 |
+
|
32 |
+
|
33 |
+
def nonlinearity(x):
|
34 |
+
# swish
|
35 |
+
return x*torch.sigmoid(x)
|
36 |
+
|
37 |
+
|
38 |
+
def Normalize(in_channels, num_groups=32):
|
39 |
+
return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
40 |
+
|
41 |
+
|
42 |
+
class Upsample(nn.Module):
|
43 |
+
def __init__(self, in_channels, with_conv):
|
44 |
+
super().__init__()
|
45 |
+
self.with_conv = with_conv
|
46 |
+
if self.with_conv:
|
47 |
+
self.conv = torch.nn.Conv2d(in_channels,
|
48 |
+
in_channels,
|
49 |
+
kernel_size=3,
|
50 |
+
stride=1,
|
51 |
+
padding=1)
|
52 |
+
|
53 |
+
def forward(self, x):
|
54 |
+
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
55 |
+
if self.with_conv:
|
56 |
+
x = self.conv(x)
|
57 |
+
return x
|
58 |
+
|
59 |
+
|
60 |
+
class Downsample(nn.Module):
|
61 |
+
def __init__(self, in_channels, with_conv):
|
62 |
+
super().__init__()
|
63 |
+
self.with_conv = with_conv
|
64 |
+
if self.with_conv:
|
65 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
66 |
+
self.conv = torch.nn.Conv2d(in_channels,
|
67 |
+
in_channels,
|
68 |
+
kernel_size=3,
|
69 |
+
stride=2,
|
70 |
+
padding=0)
|
71 |
+
|
72 |
+
def forward(self, x):
|
73 |
+
if self.with_conv:
|
74 |
+
pad = (0,1,0,1)
|
75 |
+
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
|
76 |
+
x = self.conv(x)
|
77 |
+
else:
|
78 |
+
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
|
79 |
+
return x
|
80 |
+
|
81 |
+
|
82 |
+
class ResnetBlock(nn.Module):
|
83 |
+
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
|
84 |
+
dropout, temb_channels=512):
|
85 |
+
super().__init__()
|
86 |
+
self.in_channels = in_channels
|
87 |
+
out_channels = in_channels if out_channels is None else out_channels
|
88 |
+
self.out_channels = out_channels
|
89 |
+
self.use_conv_shortcut = conv_shortcut
|
90 |
+
|
91 |
+
self.norm1 = Normalize(in_channels)
|
92 |
+
self.conv1 = torch.nn.Conv2d(in_channels,
|
93 |
+
out_channels,
|
94 |
+
kernel_size=3,
|
95 |
+
stride=1,
|
96 |
+
padding=1)
|
97 |
+
if temb_channels > 0:
|
98 |
+
self.temb_proj = torch.nn.Linear(temb_channels,
|
99 |
+
out_channels)
|
100 |
+
self.norm2 = Normalize(out_channels)
|
101 |
+
self.dropout = torch.nn.Dropout(dropout)
|
102 |
+
self.conv2 = torch.nn.Conv2d(out_channels,
|
103 |
+
out_channels,
|
104 |
+
kernel_size=3,
|
105 |
+
stride=1,
|
106 |
+
padding=1)
|
107 |
+
if self.in_channels != self.out_channels:
|
108 |
+
if self.use_conv_shortcut:
|
109 |
+
self.conv_shortcut = torch.nn.Conv2d(in_channels,
|
110 |
+
out_channels,
|
111 |
+
kernel_size=3,
|
112 |
+
stride=1,
|
113 |
+
padding=1)
|
114 |
+
else:
|
115 |
+
self.nin_shortcut = torch.nn.Conv2d(in_channels,
|
116 |
+
out_channels,
|
117 |
+
kernel_size=1,
|
118 |
+
stride=1,
|
119 |
+
padding=0)
|
120 |
+
|
121 |
+
def forward(self, x, temb):
|
122 |
+
h = x
|
123 |
+
h = self.norm1(h)
|
124 |
+
h = nonlinearity(h)
|
125 |
+
h = self.conv1(h)
|
126 |
+
|
127 |
+
if temb is not None:
|
128 |
+
h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]
|
129 |
+
|
130 |
+
h = self.norm2(h)
|
131 |
+
h = nonlinearity(h)
|
132 |
+
h = self.dropout(h)
|
133 |
+
h = self.conv2(h)
|
134 |
+
|
135 |
+
if self.in_channels != self.out_channels:
|
136 |
+
if self.use_conv_shortcut:
|
137 |
+
x = self.conv_shortcut(x)
|
138 |
+
else:
|
139 |
+
x = self.nin_shortcut(x)
|
140 |
+
|
141 |
+
return x+h
|
142 |
+
|
143 |
+
|
144 |
+
class LinAttnBlock(LinearAttention):
|
145 |
+
"""to match AttnBlock usage"""
|
146 |
+
def __init__(self, in_channels):
|
147 |
+
super().__init__(dim=in_channels, heads=1, dim_head=in_channels)
|
148 |
+
|
149 |
+
|
150 |
+
class AttnBlock(nn.Module):
|
151 |
+
def __init__(self, in_channels):
|
152 |
+
super().__init__()
|
153 |
+
self.in_channels = in_channels
|
154 |
+
|
155 |
+
self.norm = Normalize(in_channels)
|
156 |
+
self.q = torch.nn.Conv2d(in_channels,
|
157 |
+
in_channels,
|
158 |
+
kernel_size=1,
|
159 |
+
stride=1,
|
160 |
+
padding=0)
|
161 |
+
self.k = torch.nn.Conv2d(in_channels,
|
162 |
+
in_channels,
|
163 |
+
kernel_size=1,
|
164 |
+
stride=1,
|
165 |
+
padding=0)
|
166 |
+
self.v = torch.nn.Conv2d(in_channels,
|
167 |
+
in_channels,
|
168 |
+
kernel_size=1,
|
169 |
+
stride=1,
|
170 |
+
padding=0)
|
171 |
+
self.proj_out = torch.nn.Conv2d(in_channels,
|
172 |
+
in_channels,
|
173 |
+
kernel_size=1,
|
174 |
+
stride=1,
|
175 |
+
padding=0)
|
176 |
+
|
177 |
+
|
178 |
+
def forward(self, x):
|
179 |
+
h_ = x
|
180 |
+
h_ = self.norm(h_)
|
181 |
+
q = self.q(h_)
|
182 |
+
k = self.k(h_)
|
183 |
+
v = self.v(h_)
|
184 |
+
|
185 |
+
# compute attention
|
186 |
+
b,c,h,w = q.shape
|
187 |
+
q = q.reshape(b,c,h*w)
|
188 |
+
q = q.permute(0,2,1) # b,hw,c
|
189 |
+
k = k.reshape(b,c,h*w) # b,c,hw
|
190 |
+
w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
|
191 |
+
w_ = w_ * (int(c)**(-0.5))
|
192 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
193 |
+
|
194 |
+
# attend to values
|
195 |
+
v = v.reshape(b,c,h*w)
|
196 |
+
w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q)
|
197 |
+
h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
|
198 |
+
h_ = h_.reshape(b,c,h,w)
|
199 |
+
|
200 |
+
h_ = self.proj_out(h_)
|
201 |
+
|
202 |
+
return x+h_
|
203 |
+
|
204 |
+
|
205 |
+
def make_attn(in_channels, attn_type="vanilla"):
|
206 |
+
assert attn_type in ["vanilla", "linear", "none"], f'attn_type {attn_type} unknown'
|
207 |
+
print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
|
208 |
+
if attn_type == "vanilla":
|
209 |
+
return AttnBlock(in_channels)
|
210 |
+
elif attn_type == "none":
|
211 |
+
return nn.Identity(in_channels)
|
212 |
+
else:
|
213 |
+
return LinAttnBlock(in_channels)
|
214 |
+
|
215 |
+
|
216 |
+
class Model(nn.Module):
|
217 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
218 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
219 |
+
resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"):
|
220 |
+
super().__init__()
|
221 |
+
if use_linear_attn: attn_type = "linear"
|
222 |
+
self.ch = ch
|
223 |
+
self.temb_ch = self.ch*4
|
224 |
+
self.num_resolutions = len(ch_mult)
|
225 |
+
self.num_res_blocks = num_res_blocks
|
226 |
+
self.resolution = resolution
|
227 |
+
self.in_channels = in_channels
|
228 |
+
|
229 |
+
self.use_timestep = use_timestep
|
230 |
+
if self.use_timestep:
|
231 |
+
# timestep embedding
|
232 |
+
self.temb = nn.Module()
|
233 |
+
self.temb.dense = nn.ModuleList([
|
234 |
+
torch.nn.Linear(self.ch,
|
235 |
+
self.temb_ch),
|
236 |
+
torch.nn.Linear(self.temb_ch,
|
237 |
+
self.temb_ch),
|
238 |
+
])
|
239 |
+
|
240 |
+
# downsampling
|
241 |
+
self.conv_in = torch.nn.Conv2d(in_channels,
|
242 |
+
self.ch,
|
243 |
+
kernel_size=3,
|
244 |
+
stride=1,
|
245 |
+
padding=1)
|
246 |
+
|
247 |
+
curr_res = resolution
|
248 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
249 |
+
self.down = nn.ModuleList()
|
250 |
+
for i_level in range(self.num_resolutions):
|
251 |
+
block = nn.ModuleList()
|
252 |
+
attn = nn.ModuleList()
|
253 |
+
block_in = ch*in_ch_mult[i_level]
|
254 |
+
block_out = ch*ch_mult[i_level]
|
255 |
+
for i_block in range(self.num_res_blocks):
|
256 |
+
block.append(ResnetBlock(in_channels=block_in,
|
257 |
+
out_channels=block_out,
|
258 |
+
temb_channels=self.temb_ch,
|
259 |
+
dropout=dropout))
|
260 |
+
block_in = block_out
|
261 |
+
if curr_res in attn_resolutions:
|
262 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
263 |
+
down = nn.Module()
|
264 |
+
down.block = block
|
265 |
+
down.attn = attn
|
266 |
+
if i_level != self.num_resolutions-1:
|
267 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
268 |
+
curr_res = curr_res // 2
|
269 |
+
self.down.append(down)
|
270 |
+
|
271 |
+
# middle
|
272 |
+
self.mid = nn.Module()
|
273 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
274 |
+
out_channels=block_in,
|
275 |
+
temb_channels=self.temb_ch,
|
276 |
+
dropout=dropout)
|
277 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
278 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
279 |
+
out_channels=block_in,
|
280 |
+
temb_channels=self.temb_ch,
|
281 |
+
dropout=dropout)
|
282 |
+
|
283 |
+
# upsampling
|
284 |
+
self.up = nn.ModuleList()
|
285 |
+
for i_level in reversed(range(self.num_resolutions)):
|
286 |
+
block = nn.ModuleList()
|
287 |
+
attn = nn.ModuleList()
|
288 |
+
block_out = ch*ch_mult[i_level]
|
289 |
+
skip_in = ch*ch_mult[i_level]
|
290 |
+
for i_block in range(self.num_res_blocks+1):
|
291 |
+
if i_block == self.num_res_blocks:
|
292 |
+
skip_in = ch*in_ch_mult[i_level]
|
293 |
+
block.append(ResnetBlock(in_channels=block_in+skip_in,
|
294 |
+
out_channels=block_out,
|
295 |
+
temb_channels=self.temb_ch,
|
296 |
+
dropout=dropout))
|
297 |
+
block_in = block_out
|
298 |
+
if curr_res in attn_resolutions:
|
299 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
300 |
+
up = nn.Module()
|
301 |
+
up.block = block
|
302 |
+
up.attn = attn
|
303 |
+
if i_level != 0:
|
304 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
305 |
+
curr_res = curr_res * 2
|
306 |
+
self.up.insert(0, up) # prepend to get consistent order
|
307 |
+
|
308 |
+
# end
|
309 |
+
self.norm_out = Normalize(block_in)
|
310 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
311 |
+
out_ch,
|
312 |
+
kernel_size=3,
|
313 |
+
stride=1,
|
314 |
+
padding=1)
|
315 |
+
|
316 |
+
def forward(self, x, t=None, context=None):
|
317 |
+
#assert x.shape[2] == x.shape[3] == self.resolution
|
318 |
+
if context is not None:
|
319 |
+
# assume aligned context, cat along channel axis
|
320 |
+
x = torch.cat((x, context), dim=1)
|
321 |
+
if self.use_timestep:
|
322 |
+
# timestep embedding
|
323 |
+
assert t is not None
|
324 |
+
temb = get_timestep_embedding(t, self.ch)
|
325 |
+
temb = self.temb.dense[0](temb)
|
326 |
+
temb = nonlinearity(temb)
|
327 |
+
temb = self.temb.dense[1](temb)
|
328 |
+
else:
|
329 |
+
temb = None
|
330 |
+
|
331 |
+
# downsampling
|
332 |
+
hs = [self.conv_in(x)]
|
333 |
+
for i_level in range(self.num_resolutions):
|
334 |
+
for i_block in range(self.num_res_blocks):
|
335 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
336 |
+
if len(self.down[i_level].attn) > 0:
|
337 |
+
h = self.down[i_level].attn[i_block](h)
|
338 |
+
hs.append(h)
|
339 |
+
if i_level != self.num_resolutions-1:
|
340 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
341 |
+
|
342 |
+
# middle
|
343 |
+
h = hs[-1]
|
344 |
+
h = self.mid.block_1(h, temb)
|
345 |
+
h = self.mid.attn_1(h)
|
346 |
+
h = self.mid.block_2(h, temb)
|
347 |
+
|
348 |
+
# upsampling
|
349 |
+
for i_level in reversed(range(self.num_resolutions)):
|
350 |
+
for i_block in range(self.num_res_blocks+1):
|
351 |
+
h = self.up[i_level].block[i_block](
|
352 |
+
torch.cat([h, hs.pop()], dim=1), temb)
|
353 |
+
if len(self.up[i_level].attn) > 0:
|
354 |
+
h = self.up[i_level].attn[i_block](h)
|
355 |
+
if i_level != 0:
|
356 |
+
h = self.up[i_level].upsample(h)
|
357 |
+
|
358 |
+
# end
|
359 |
+
h = self.norm_out(h)
|
360 |
+
h = nonlinearity(h)
|
361 |
+
h = self.conv_out(h)
|
362 |
+
return h
|
363 |
+
|
364 |
+
def get_last_layer(self):
|
365 |
+
return self.conv_out.weight
|
366 |
+
|
367 |
+
|
368 |
+
class Encoder(nn.Module):
|
369 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
370 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
371 |
+
resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",
|
372 |
+
**ignore_kwargs):
|
373 |
+
super().__init__()
|
374 |
+
if use_linear_attn: attn_type = "linear"
|
375 |
+
self.ch = ch
|
376 |
+
self.temb_ch = 0
|
377 |
+
self.num_resolutions = len(ch_mult)
|
378 |
+
self.num_res_blocks = num_res_blocks
|
379 |
+
self.resolution = resolution
|
380 |
+
self.in_channels = in_channels
|
381 |
+
|
382 |
+
# downsampling
|
383 |
+
self.conv_in = torch.nn.Conv2d(in_channels,
|
384 |
+
self.ch,
|
385 |
+
kernel_size=3,
|
386 |
+
stride=1,
|
387 |
+
padding=1)
|
388 |
+
|
389 |
+
curr_res = resolution
|
390 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
391 |
+
self.in_ch_mult = in_ch_mult
|
392 |
+
self.down = nn.ModuleList()
|
393 |
+
for i_level in range(self.num_resolutions):
|
394 |
+
block = nn.ModuleList()
|
395 |
+
attn = nn.ModuleList()
|
396 |
+
block_in = ch*in_ch_mult[i_level]
|
397 |
+
block_out = ch*ch_mult[i_level]
|
398 |
+
for i_block in range(self.num_res_blocks):
|
399 |
+
block.append(ResnetBlock(in_channels=block_in,
|
400 |
+
out_channels=block_out,
|
401 |
+
temb_channels=self.temb_ch,
|
402 |
+
dropout=dropout))
|
403 |
+
block_in = block_out
|
404 |
+
if curr_res in attn_resolutions:
|
405 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
406 |
+
down = nn.Module()
|
407 |
+
down.block = block
|
408 |
+
down.attn = attn
|
409 |
+
if i_level != self.num_resolutions-1:
|
410 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
411 |
+
curr_res = curr_res // 2
|
412 |
+
self.down.append(down)
|
413 |
+
|
414 |
+
# middle
|
415 |
+
self.mid = nn.Module()
|
416 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
417 |
+
out_channels=block_in,
|
418 |
+
temb_channels=self.temb_ch,
|
419 |
+
dropout=dropout)
|
420 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
421 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
422 |
+
out_channels=block_in,
|
423 |
+
temb_channels=self.temb_ch,
|
424 |
+
dropout=dropout)
|
425 |
+
|
426 |
+
# end
|
427 |
+
self.norm_out = Normalize(block_in)
|
428 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
429 |
+
2*z_channels if double_z else z_channels,
|
430 |
+
kernel_size=3,
|
431 |
+
stride=1,
|
432 |
+
padding=1)
|
433 |
+
|
434 |
+
def forward(self, x):
|
435 |
+
# timestep embedding
|
436 |
+
temb = None
|
437 |
+
|
438 |
+
# downsampling
|
439 |
+
hs = [self.conv_in(x)]
|
440 |
+
for i_level in range(self.num_resolutions):
|
441 |
+
for i_block in range(self.num_res_blocks):
|
442 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
443 |
+
if len(self.down[i_level].attn) > 0:
|
444 |
+
h = self.down[i_level].attn[i_block](h)
|
445 |
+
hs.append(h)
|
446 |
+
if i_level != self.num_resolutions-1:
|
447 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
448 |
+
|
449 |
+
# middle
|
450 |
+
h = hs[-1]
|
451 |
+
h = self.mid.block_1(h, temb)
|
452 |
+
h = self.mid.attn_1(h)
|
453 |
+
h = self.mid.block_2(h, temb)
|
454 |
+
|
455 |
+
# end
|
456 |
+
h = self.norm_out(h)
|
457 |
+
h = nonlinearity(h)
|
458 |
+
h = self.conv_out(h)
|
459 |
+
return h
|
460 |
+
|
461 |
+
|
462 |
+
class Decoder(nn.Module):
|
463 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
464 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
465 |
+
resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
|
466 |
+
attn_type="vanilla", **ignorekwargs):
|
467 |
+
super().__init__()
|
468 |
+
if use_linear_attn: attn_type = "linear"
|
469 |
+
self.ch = ch
|
470 |
+
self.temb_ch = 0
|
471 |
+
self.num_resolutions = len(ch_mult)
|
472 |
+
self.num_res_blocks = num_res_blocks
|
473 |
+
self.resolution = resolution
|
474 |
+
self.in_channels = in_channels
|
475 |
+
self.give_pre_end = give_pre_end
|
476 |
+
self.tanh_out = tanh_out
|
477 |
+
|
478 |
+
# compute in_ch_mult, block_in and curr_res at lowest res
|
479 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
480 |
+
block_in = ch*ch_mult[self.num_resolutions-1]
|
481 |
+
curr_res = resolution // 2**(self.num_resolutions-1)
|
482 |
+
self.z_shape = (1,z_channels,curr_res,curr_res)
|
483 |
+
print("Working with z of shape {} = {} dimensions.".format(
|
484 |
+
self.z_shape, np.prod(self.z_shape)))
|
485 |
+
|
486 |
+
# z to block_in
|
487 |
+
self.conv_in = torch.nn.Conv2d(z_channels,
|
488 |
+
block_in,
|
489 |
+
kernel_size=3,
|
490 |
+
stride=1,
|
491 |
+
padding=1)
|
492 |
+
|
493 |
+
# middle
|
494 |
+
self.mid = nn.Module()
|
495 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
496 |
+
out_channels=block_in,
|
497 |
+
temb_channels=self.temb_ch,
|
498 |
+
dropout=dropout)
|
499 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
500 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
501 |
+
out_channels=block_in,
|
502 |
+
temb_channels=self.temb_ch,
|
503 |
+
dropout=dropout)
|
504 |
+
|
505 |
+
# upsampling
|
506 |
+
self.up = nn.ModuleList()
|
507 |
+
for i_level in reversed(range(self.num_resolutions)):
|
508 |
+
block = nn.ModuleList()
|
509 |
+
attn = nn.ModuleList()
|
510 |
+
block_out = ch*ch_mult[i_level]
|
511 |
+
for i_block in range(self.num_res_blocks+1):
|
512 |
+
block.append(ResnetBlock(in_channels=block_in,
|
513 |
+
out_channels=block_out,
|
514 |
+
temb_channels=self.temb_ch,
|
515 |
+
dropout=dropout))
|
516 |
+
block_in = block_out
|
517 |
+
if curr_res in attn_resolutions:
|
518 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
519 |
+
up = nn.Module()
|
520 |
+
up.block = block
|
521 |
+
up.attn = attn
|
522 |
+
if i_level != 0:
|
523 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
524 |
+
curr_res = curr_res * 2
|
525 |
+
self.up.insert(0, up) # prepend to get consistent order
|
526 |
+
|
527 |
+
# end
|
528 |
+
self.norm_out = Normalize(block_in)
|
529 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
530 |
+
out_ch,
|
531 |
+
kernel_size=3,
|
532 |
+
stride=1,
|
533 |
+
padding=1)
|
534 |
+
|
535 |
+
def forward(self, z):
|
536 |
+
#assert z.shape[1:] == self.z_shape[1:]
|
537 |
+
self.last_z_shape = z.shape
|
538 |
+
|
539 |
+
# timestep embedding
|
540 |
+
temb = None
|
541 |
+
|
542 |
+
# z to block_in
|
543 |
+
h = self.conv_in(z)
|
544 |
+
|
545 |
+
# middle
|
546 |
+
h = self.mid.block_1(h, temb)
|
547 |
+
h = self.mid.attn_1(h)
|
548 |
+
h = self.mid.block_2(h, temb)
|
549 |
+
|
550 |
+
# upsampling
|
551 |
+
for i_level in reversed(range(self.num_resolutions)):
|
552 |
+
for i_block in range(self.num_res_blocks+1):
|
553 |
+
h = self.up[i_level].block[i_block](h, temb)
|
554 |
+
if len(self.up[i_level].attn) > 0:
|
555 |
+
h = self.up[i_level].attn[i_block](h)
|
556 |
+
if i_level != 0:
|
557 |
+
h = self.up[i_level].upsample(h)
|
558 |
+
|
559 |
+
# end
|
560 |
+
if self.give_pre_end:
|
561 |
+
return h
|
562 |
+
|
563 |
+
h = self.norm_out(h)
|
564 |
+
h = nonlinearity(h)
|
565 |
+
h = self.conv_out(h)
|
566 |
+
if self.tanh_out:
|
567 |
+
h = torch.tanh(h)
|
568 |
+
return h
|
569 |
+
|
570 |
+
|
571 |
+
class SimpleDecoder(nn.Module):
|
572 |
+
def __init__(self, in_channels, out_channels, *args, **kwargs):
|
573 |
+
super().__init__()
|
574 |
+
self.model = nn.ModuleList([nn.Conv2d(in_channels, in_channels, 1),
|
575 |
+
ResnetBlock(in_channels=in_channels,
|
576 |
+
out_channels=2 * in_channels,
|
577 |
+
temb_channels=0, dropout=0.0),
|
578 |
+
ResnetBlock(in_channels=2 * in_channels,
|
579 |
+
out_channels=4 * in_channels,
|
580 |
+
temb_channels=0, dropout=0.0),
|
581 |
+
ResnetBlock(in_channels=4 * in_channels,
|
582 |
+
out_channels=2 * in_channels,
|
583 |
+
temb_channels=0, dropout=0.0),
|
584 |
+
nn.Conv2d(2*in_channels, in_channels, 1),
|
585 |
+
Upsample(in_channels, with_conv=True)])
|
586 |
+
# end
|
587 |
+
self.norm_out = Normalize(in_channels)
|
588 |
+
self.conv_out = torch.nn.Conv2d(in_channels,
|
589 |
+
out_channels,
|
590 |
+
kernel_size=3,
|
591 |
+
stride=1,
|
592 |
+
padding=1)
|
593 |
+
|
594 |
+
def forward(self, x):
|
595 |
+
for i, layer in enumerate(self.model):
|
596 |
+
if i in [1,2,3]:
|
597 |
+
x = layer(x, None)
|
598 |
+
else:
|
599 |
+
x = layer(x)
|
600 |
+
|
601 |
+
h = self.norm_out(x)
|
602 |
+
h = nonlinearity(h)
|
603 |
+
x = self.conv_out(h)
|
604 |
+
return x
|
605 |
+
|
606 |
+
|
607 |
+
class UpsampleDecoder(nn.Module):
|
608 |
+
def __init__(self, in_channels, out_channels, ch, num_res_blocks, resolution,
|
609 |
+
ch_mult=(2,2), dropout=0.0):
|
610 |
+
super().__init__()
|
611 |
+
# upsampling
|
612 |
+
self.temb_ch = 0
|
613 |
+
self.num_resolutions = len(ch_mult)
|
614 |
+
self.num_res_blocks = num_res_blocks
|
615 |
+
block_in = in_channels
|
616 |
+
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
617 |
+
self.res_blocks = nn.ModuleList()
|
618 |
+
self.upsample_blocks = nn.ModuleList()
|
619 |
+
for i_level in range(self.num_resolutions):
|
620 |
+
res_block = []
|
621 |
+
block_out = ch * ch_mult[i_level]
|
622 |
+
for i_block in range(self.num_res_blocks + 1):
|
623 |
+
res_block.append(ResnetBlock(in_channels=block_in,
|
624 |
+
out_channels=block_out,
|
625 |
+
temb_channels=self.temb_ch,
|
626 |
+
dropout=dropout))
|
627 |
+
block_in = block_out
|
628 |
+
self.res_blocks.append(nn.ModuleList(res_block))
|
629 |
+
if i_level != self.num_resolutions - 1:
|
630 |
+
self.upsample_blocks.append(Upsample(block_in, True))
|
631 |
+
curr_res = curr_res * 2
|
632 |
+
|
633 |
+
# end
|
634 |
+
self.norm_out = Normalize(block_in)
|
635 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
636 |
+
out_channels,
|
637 |
+
kernel_size=3,
|
638 |
+
stride=1,
|
639 |
+
padding=1)
|
640 |
+
|
641 |
+
def forward(self, x):
|
642 |
+
# upsampling
|
643 |
+
h = x
|
644 |
+
for k, i_level in enumerate(range(self.num_resolutions)):
|
645 |
+
for i_block in range(self.num_res_blocks + 1):
|
646 |
+
h = self.res_blocks[i_level][i_block](h, None)
|
647 |
+
if i_level != self.num_resolutions - 1:
|
648 |
+
h = self.upsample_blocks[k](h)
|
649 |
+
h = self.norm_out(h)
|
650 |
+
h = nonlinearity(h)
|
651 |
+
h = self.conv_out(h)
|
652 |
+
return h
|
653 |
+
|
654 |
+
|
655 |
+
class LatentRescaler(nn.Module):
|
656 |
+
def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2):
|
657 |
+
super().__init__()
|
658 |
+
# residual block, interpolate, residual block
|
659 |
+
self.factor = factor
|
660 |
+
self.conv_in = nn.Conv2d(in_channels,
|
661 |
+
mid_channels,
|
662 |
+
kernel_size=3,
|
663 |
+
stride=1,
|
664 |
+
padding=1)
|
665 |
+
self.res_block1 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
|
666 |
+
out_channels=mid_channels,
|
667 |
+
temb_channels=0,
|
668 |
+
dropout=0.0) for _ in range(depth)])
|
669 |
+
self.attn = AttnBlock(mid_channels)
|
670 |
+
self.res_block2 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
|
671 |
+
out_channels=mid_channels,
|
672 |
+
temb_channels=0,
|
673 |
+
dropout=0.0) for _ in range(depth)])
|
674 |
+
|
675 |
+
self.conv_out = nn.Conv2d(mid_channels,
|
676 |
+
out_channels,
|
677 |
+
kernel_size=1,
|
678 |
+
)
|
679 |
+
|
680 |
+
def forward(self, x):
|
681 |
+
x = self.conv_in(x)
|
682 |
+
for block in self.res_block1:
|
683 |
+
x = block(x, None)
|
684 |
+
x = torch.nn.functional.interpolate(x, size=(int(round(x.shape[2]*self.factor)), int(round(x.shape[3]*self.factor))))
|
685 |
+
x = self.attn(x)
|
686 |
+
for block in self.res_block2:
|
687 |
+
x = block(x, None)
|
688 |
+
x = self.conv_out(x)
|
689 |
+
return x
|
690 |
+
|
691 |
+
|
692 |
+
class MergedRescaleEncoder(nn.Module):
|
693 |
+
def __init__(self, in_channels, ch, resolution, out_ch, num_res_blocks,
|
694 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True,
|
695 |
+
ch_mult=(1,2,4,8), rescale_factor=1.0, rescale_module_depth=1):
|
696 |
+
super().__init__()
|
697 |
+
intermediate_chn = ch * ch_mult[-1]
|
698 |
+
self.encoder = Encoder(in_channels=in_channels, num_res_blocks=num_res_blocks, ch=ch, ch_mult=ch_mult,
|
699 |
+
z_channels=intermediate_chn, double_z=False, resolution=resolution,
|
700 |
+
attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv,
|
701 |
+
out_ch=None)
|
702 |
+
self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=intermediate_chn,
|
703 |
+
mid_channels=intermediate_chn, out_channels=out_ch, depth=rescale_module_depth)
|
704 |
+
|
705 |
+
def forward(self, x):
|
706 |
+
x = self.encoder(x)
|
707 |
+
x = self.rescaler(x)
|
708 |
+
return x
|
709 |
+
|
710 |
+
|
711 |
+
class MergedRescaleDecoder(nn.Module):
|
712 |
+
def __init__(self, z_channels, out_ch, resolution, num_res_blocks, attn_resolutions, ch, ch_mult=(1,2,4,8),
|
713 |
+
dropout=0.0, resamp_with_conv=True, rescale_factor=1.0, rescale_module_depth=1):
|
714 |
+
super().__init__()
|
715 |
+
tmp_chn = z_channels*ch_mult[-1]
|
716 |
+
self.decoder = Decoder(out_ch=out_ch, z_channels=tmp_chn, attn_resolutions=attn_resolutions, dropout=dropout,
|
717 |
+
resamp_with_conv=resamp_with_conv, in_channels=None, num_res_blocks=num_res_blocks,
|
718 |
+
ch_mult=ch_mult, resolution=resolution, ch=ch)
|
719 |
+
self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=z_channels, mid_channels=tmp_chn,
|
720 |
+
out_channels=tmp_chn, depth=rescale_module_depth)
|
721 |
+
|
722 |
+
def forward(self, x):
|
723 |
+
x = self.rescaler(x)
|
724 |
+
x = self.decoder(x)
|
725 |
+
return x
|
726 |
+
|
727 |
+
|
728 |
+
class Upsampler(nn.Module):
|
729 |
+
def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2):
|
730 |
+
super().__init__()
|
731 |
+
assert out_size >= in_size
|
732 |
+
num_blocks = int(np.log2(out_size//in_size))+1
|
733 |
+
factor_up = 1.+ (out_size % in_size)
|
734 |
+
print(f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}")
|
735 |
+
self.rescaler = LatentRescaler(factor=factor_up, in_channels=in_channels, mid_channels=2*in_channels,
|
736 |
+
out_channels=in_channels)
|
737 |
+
self.decoder = Decoder(out_ch=out_channels, resolution=out_size, z_channels=in_channels, num_res_blocks=2,
|
738 |
+
attn_resolutions=[], in_channels=None, ch=in_channels,
|
739 |
+
ch_mult=[ch_mult for _ in range(num_blocks)])
|
740 |
+
|
741 |
+
def forward(self, x):
|
742 |
+
x = self.rescaler(x)
|
743 |
+
x = self.decoder(x)
|
744 |
+
return x
|
745 |
+
|
746 |
+
|
747 |
+
class Resize(nn.Module):
|
748 |
+
def __init__(self, in_channels=None, learned=False, mode="bilinear"):
|
749 |
+
super().__init__()
|
750 |
+
self.with_conv = learned
|
751 |
+
self.mode = mode
|
752 |
+
if self.with_conv:
|
753 |
+
print(f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode")
|
754 |
+
raise NotImplementedError()
|
755 |
+
assert in_channels is not None
|
756 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
757 |
+
self.conv = torch.nn.Conv2d(in_channels,
|
758 |
+
in_channels,
|
759 |
+
kernel_size=4,
|
760 |
+
stride=2,
|
761 |
+
padding=1)
|
762 |
+
|
763 |
+
def forward(self, x, scale_factor=1.0):
|
764 |
+
if scale_factor==1.0:
|
765 |
+
return x
|
766 |
+
else:
|
767 |
+
x = torch.nn.functional.interpolate(x, mode=self.mode, align_corners=False, scale_factor=scale_factor)
|
768 |
+
return x
|
769 |
+
|
770 |
+
class FirstStagePostProcessor(nn.Module):
|
771 |
+
|
772 |
+
def __init__(self, ch_mult:list, in_channels,
|
773 |
+
pretrained_model:nn.Module=None,
|
774 |
+
reshape=False,
|
775 |
+
n_channels=None,
|
776 |
+
dropout=0.,
|
777 |
+
pretrained_config=None):
|
778 |
+
super().__init__()
|
779 |
+
if pretrained_config is None:
|
780 |
+
assert pretrained_model is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
|
781 |
+
self.pretrained_model = pretrained_model
|
782 |
+
else:
|
783 |
+
assert pretrained_config is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
|
784 |
+
self.instantiate_pretrained(pretrained_config)
|
785 |
+
|
786 |
+
self.do_reshape = reshape
|
787 |
+
|
788 |
+
if n_channels is None:
|
789 |
+
n_channels = self.pretrained_model.encoder.ch
|
790 |
+
|
791 |
+
self.proj_norm = Normalize(in_channels,num_groups=in_channels//2)
|
792 |
+
self.proj = nn.Conv2d(in_channels,n_channels,kernel_size=3,
|
793 |
+
stride=1,padding=1)
|
794 |
+
|
795 |
+
blocks = []
|
796 |
+
downs = []
|
797 |
+
ch_in = n_channels
|
798 |
+
for m in ch_mult:
|
799 |
+
blocks.append(ResnetBlock(in_channels=ch_in,out_channels=m*n_channels,dropout=dropout))
|
800 |
+
ch_in = m * n_channels
|
801 |
+
downs.append(Downsample(ch_in, with_conv=False))
|
802 |
+
|
803 |
+
self.model = nn.ModuleList(blocks)
|
804 |
+
self.downsampler = nn.ModuleList(downs)
|
805 |
+
|
806 |
+
|
807 |
+
def instantiate_pretrained(self, config):
|
808 |
+
model = instantiate_from_config(config)
|
809 |
+
self.pretrained_model = model.eval()
|
810 |
+
# self.pretrained_model.train = False
|
811 |
+
for param in self.pretrained_model.parameters():
|
812 |
+
param.requires_grad = False
|
813 |
+
|
814 |
+
|
815 |
+
@torch.no_grad()
|
816 |
+
def encode_with_pretrained(self,x):
|
817 |
+
c = self.pretrained_model.encode(x)
|
818 |
+
if isinstance(c, DiagonalGaussianDistribution):
|
819 |
+
c = c.mode()
|
820 |
+
return c
|
821 |
+
|
822 |
+
def forward(self,x):
|
823 |
+
z_fs = self.encode_with_pretrained(x)
|
824 |
+
z = self.proj_norm(z_fs)
|
825 |
+
z = self.proj(z)
|
826 |
+
z = nonlinearity(z)
|
827 |
+
|
828 |
+
for submodel, downmodel in zip(self.model,self.downsampler):
|
829 |
+
z = submodel(z,temb=None)
|
830 |
+
z = downmodel(z)
|
831 |
+
|
832 |
+
if self.do_reshape:
|
833 |
+
z = rearrange(z,'b c h w -> b (h w) c')
|
834 |
+
return z
|
835 |
+
|
ldm/modules/diffusionmodules/openaimodel.py
ADDED
@@ -0,0 +1,936 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import abstractmethod
|
2 |
+
from functools import partial
|
3 |
+
import math
|
4 |
+
from typing import Iterable
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import torch as th
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch.nn.functional as F
|
10 |
+
|
11 |
+
from ldm.modules.diffusionmodules.util import (
|
12 |
+
checkpoint,
|
13 |
+
conv_nd,
|
14 |
+
linear,
|
15 |
+
avg_pool_nd,
|
16 |
+
zero_module,
|
17 |
+
normalization,
|
18 |
+
timestep_embedding,
|
19 |
+
)
|
20 |
+
from ldm.modules.attention import SpatialTransformer
|
21 |
+
|
22 |
+
|
23 |
+
# dummy replace
|
24 |
+
def convert_module_to_f16(x):
|
25 |
+
pass
|
26 |
+
|
27 |
+
def convert_module_to_f32(x):
|
28 |
+
pass
|
29 |
+
|
30 |
+
|
31 |
+
## go
|
32 |
+
class AttentionPool2d(nn.Module):
|
33 |
+
"""
|
34 |
+
Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
|
35 |
+
"""
|
36 |
+
|
37 |
+
def __init__(
|
38 |
+
self,
|
39 |
+
spacial_dim: int,
|
40 |
+
embed_dim: int,
|
41 |
+
num_heads_channels: int,
|
42 |
+
output_dim: int = None,
|
43 |
+
):
|
44 |
+
super().__init__()
|
45 |
+
self.positional_embedding = nn.Parameter(th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5)
|
46 |
+
self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
|
47 |
+
self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
|
48 |
+
self.num_heads = embed_dim // num_heads_channels
|
49 |
+
self.attention = QKVAttention(self.num_heads)
|
50 |
+
|
51 |
+
def forward(self, x):
|
52 |
+
b, c, *_spatial = x.shape
|
53 |
+
x = x.reshape(b, c, -1) # NC(HW)
|
54 |
+
x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1)
|
55 |
+
x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1)
|
56 |
+
x = self.qkv_proj(x)
|
57 |
+
x = self.attention(x)
|
58 |
+
x = self.c_proj(x)
|
59 |
+
return x[:, :, 0]
|
60 |
+
|
61 |
+
|
62 |
+
class TimestepBlock(nn.Module):
|
63 |
+
"""
|
64 |
+
Any module where forward() takes timestep embeddings as a second argument.
|
65 |
+
"""
|
66 |
+
|
67 |
+
@abstractmethod
|
68 |
+
def forward(self, x, emb):
|
69 |
+
"""
|
70 |
+
Apply the module to `x` given `emb` timestep embeddings.
|
71 |
+
"""
|
72 |
+
|
73 |
+
|
74 |
+
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
75 |
+
"""
|
76 |
+
A sequential module that passes timestep embeddings to the children that
|
77 |
+
support it as an extra input.
|
78 |
+
"""
|
79 |
+
|
80 |
+
def forward(self, x, emb, context=None):
|
81 |
+
for layer in self:
|
82 |
+
if isinstance(layer, TimestepBlock):
|
83 |
+
x = layer(x, emb)
|
84 |
+
elif isinstance(layer, SpatialTransformer):
|
85 |
+
x = layer(x, context)
|
86 |
+
else:
|
87 |
+
x = layer(x)
|
88 |
+
return x
|
89 |
+
|
90 |
+
|
91 |
+
class Upsample(nn.Module):
|
92 |
+
"""
|
93 |
+
An upsampling layer with an optional convolution.
|
94 |
+
:param channels: channels in the inputs and outputs.
|
95 |
+
:param use_conv: a bool determining if a convolution is applied.
|
96 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
97 |
+
upsampling occurs in the inner-two dimensions.
|
98 |
+
"""
|
99 |
+
|
100 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
101 |
+
super().__init__()
|
102 |
+
self.channels = channels
|
103 |
+
self.out_channels = out_channels or channels
|
104 |
+
self.use_conv = use_conv
|
105 |
+
self.dims = dims
|
106 |
+
if use_conv:
|
107 |
+
self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
|
108 |
+
|
109 |
+
def forward(self, x):
|
110 |
+
assert x.shape[1] == self.channels
|
111 |
+
if self.dims == 3:
|
112 |
+
x = F.interpolate(
|
113 |
+
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
|
114 |
+
)
|
115 |
+
else:
|
116 |
+
x = F.interpolate(x, scale_factor=2, mode="nearest")
|
117 |
+
if self.use_conv:
|
118 |
+
x = self.conv(x)
|
119 |
+
return x
|
120 |
+
|
121 |
+
class TransposedUpsample(nn.Module):
|
122 |
+
'Learned 2x upsampling without padding'
|
123 |
+
def __init__(self, channels, out_channels=None, ks=5):
|
124 |
+
super().__init__()
|
125 |
+
self.channels = channels
|
126 |
+
self.out_channels = out_channels or channels
|
127 |
+
|
128 |
+
self.up = nn.ConvTranspose2d(self.channels,self.out_channels,kernel_size=ks,stride=2)
|
129 |
+
|
130 |
+
def forward(self,x):
|
131 |
+
return self.up(x)
|
132 |
+
|
133 |
+
|
134 |
+
class Downsample(nn.Module):
|
135 |
+
"""
|
136 |
+
A downsampling layer with an optional convolution.
|
137 |
+
:param channels: channels in the inputs and outputs.
|
138 |
+
:param use_conv: a bool determining if a convolution is applied.
|
139 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
140 |
+
downsampling occurs in the inner-two dimensions.
|
141 |
+
"""
|
142 |
+
|
143 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1):
|
144 |
+
super().__init__()
|
145 |
+
self.channels = channels
|
146 |
+
self.out_channels = out_channels or channels
|
147 |
+
self.use_conv = use_conv
|
148 |
+
self.dims = dims
|
149 |
+
stride = 2 if dims != 3 else (1, 2, 2)
|
150 |
+
if use_conv:
|
151 |
+
self.op = conv_nd(
|
152 |
+
dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
|
153 |
+
)
|
154 |
+
else:
|
155 |
+
assert self.channels == self.out_channels
|
156 |
+
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
|
157 |
+
|
158 |
+
def forward(self, x):
|
159 |
+
assert x.shape[1] == self.channels
|
160 |
+
return self.op(x)
|
161 |
+
|
162 |
+
|
163 |
+
class ResBlock(TimestepBlock):
|
164 |
+
"""
|
165 |
+
A residual block that can optionally change the number of channels.
|
166 |
+
:param channels: the number of input channels.
|
167 |
+
:param emb_channels: the number of timestep embedding channels.
|
168 |
+
:param dropout: the rate of dropout.
|
169 |
+
:param out_channels: if specified, the number of out channels.
|
170 |
+
:param use_conv: if True and out_channels is specified, use a spatial
|
171 |
+
convolution instead of a smaller 1x1 convolution to change the
|
172 |
+
channels in the skip connection.
|
173 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
174 |
+
:param use_checkpoint: if True, use gradient checkpointing on this module.
|
175 |
+
:param up: if True, use this block for upsampling.
|
176 |
+
:param down: if True, use this block for downsampling.
|
177 |
+
"""
|
178 |
+
|
179 |
+
def __init__(
|
180 |
+
self,
|
181 |
+
channels,
|
182 |
+
emb_channels,
|
183 |
+
dropout,
|
184 |
+
out_channels=None,
|
185 |
+
use_conv=False,
|
186 |
+
use_scale_shift_norm=False,
|
187 |
+
dims=2,
|
188 |
+
use_checkpoint=False,
|
189 |
+
up=False,
|
190 |
+
down=False,
|
191 |
+
):
|
192 |
+
super().__init__()
|
193 |
+
self.channels = channels
|
194 |
+
self.emb_channels = emb_channels
|
195 |
+
self.dropout = dropout
|
196 |
+
self.out_channels = out_channels or channels
|
197 |
+
self.use_conv = use_conv
|
198 |
+
self.use_checkpoint = use_checkpoint
|
199 |
+
self.use_scale_shift_norm = use_scale_shift_norm
|
200 |
+
|
201 |
+
self.in_layers = nn.Sequential(
|
202 |
+
normalization(channels),
|
203 |
+
nn.SiLU(),
|
204 |
+
conv_nd(dims, channels, self.out_channels, 3, padding=1),
|
205 |
+
)
|
206 |
+
|
207 |
+
self.updown = up or down
|
208 |
+
|
209 |
+
if up:
|
210 |
+
self.h_upd = Upsample(channels, False, dims)
|
211 |
+
self.x_upd = Upsample(channels, False, dims)
|
212 |
+
elif down:
|
213 |
+
self.h_upd = Downsample(channels, False, dims)
|
214 |
+
self.x_upd = Downsample(channels, False, dims)
|
215 |
+
else:
|
216 |
+
self.h_upd = self.x_upd = nn.Identity()
|
217 |
+
|
218 |
+
self.emb_layers = nn.Sequential(
|
219 |
+
nn.SiLU(),
|
220 |
+
linear(
|
221 |
+
emb_channels,
|
222 |
+
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
|
223 |
+
),
|
224 |
+
)
|
225 |
+
self.out_layers = nn.Sequential(
|
226 |
+
normalization(self.out_channels),
|
227 |
+
nn.SiLU(),
|
228 |
+
nn.Dropout(p=dropout),
|
229 |
+
zero_module(
|
230 |
+
conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
|
231 |
+
),
|
232 |
+
)
|
233 |
+
|
234 |
+
if self.out_channels == channels:
|
235 |
+
self.skip_connection = nn.Identity()
|
236 |
+
elif use_conv:
|
237 |
+
self.skip_connection = conv_nd(
|
238 |
+
dims, channels, self.out_channels, 3, padding=1
|
239 |
+
)
|
240 |
+
else:
|
241 |
+
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
242 |
+
|
243 |
+
def forward(self, x, emb):
|
244 |
+
"""
|
245 |
+
Apply the block to a Tensor, conditioned on a timestep embedding.
|
246 |
+
:param x: an [N x C x ...] Tensor of features.
|
247 |
+
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
|
248 |
+
:return: an [N x C x ...] Tensor of outputs.
|
249 |
+
"""
|
250 |
+
return checkpoint(
|
251 |
+
self._forward, (x, emb), self.parameters(), self.use_checkpoint
|
252 |
+
)
|
253 |
+
|
254 |
+
|
255 |
+
def _forward(self, x, emb):
|
256 |
+
if self.updown:
|
257 |
+
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
258 |
+
h = in_rest(x)
|
259 |
+
h = self.h_upd(h)
|
260 |
+
x = self.x_upd(x)
|
261 |
+
h = in_conv(h)
|
262 |
+
else:
|
263 |
+
h = self.in_layers(x)
|
264 |
+
emb_out = self.emb_layers(emb).type(h.dtype)
|
265 |
+
while len(emb_out.shape) < len(h.shape):
|
266 |
+
emb_out = emb_out[..., None]
|
267 |
+
if self.use_scale_shift_norm:
|
268 |
+
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
269 |
+
scale, shift = th.chunk(emb_out, 2, dim=1)
|
270 |
+
h = out_norm(h) * (1 + scale) + shift
|
271 |
+
h = out_rest(h)
|
272 |
+
else:
|
273 |
+
h = h + emb_out
|
274 |
+
h = self.out_layers(h)
|
275 |
+
return self.skip_connection(x) + h
|
276 |
+
|
277 |
+
|
278 |
+
class AttentionBlock(nn.Module):
|
279 |
+
"""
|
280 |
+
An attention block that allows spatial positions to attend to each other.
|
281 |
+
Originally ported from here, but adapted to the N-d case.
|
282 |
+
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
|
283 |
+
"""
|
284 |
+
|
285 |
+
def __init__(
|
286 |
+
self,
|
287 |
+
channels,
|
288 |
+
num_heads=1,
|
289 |
+
num_head_channels=-1,
|
290 |
+
use_checkpoint=False,
|
291 |
+
use_new_attention_order=False,
|
292 |
+
):
|
293 |
+
super().__init__()
|
294 |
+
self.channels = channels
|
295 |
+
if num_head_channels == -1:
|
296 |
+
self.num_heads = num_heads
|
297 |
+
else:
|
298 |
+
assert (
|
299 |
+
channels % num_head_channels == 0
|
300 |
+
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
|
301 |
+
self.num_heads = channels // num_head_channels
|
302 |
+
self.use_checkpoint = use_checkpoint
|
303 |
+
self.norm = normalization(channels)
|
304 |
+
self.qkv = conv_nd(1, channels, channels * 3, 1)
|
305 |
+
if use_new_attention_order:
|
306 |
+
# split qkv before split heads
|
307 |
+
self.attention = QKVAttention(self.num_heads)
|
308 |
+
else:
|
309 |
+
# split heads before split qkv
|
310 |
+
self.attention = QKVAttentionLegacy(self.num_heads)
|
311 |
+
|
312 |
+
self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
|
313 |
+
|
314 |
+
def forward(self, x):
|
315 |
+
return checkpoint(self._forward, (x,), self.parameters(), True) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!!
|
316 |
+
#return pt_checkpoint(self._forward, x) # pytorch
|
317 |
+
|
318 |
+
def _forward(self, x):
|
319 |
+
b, c, *spatial = x.shape
|
320 |
+
x = x.reshape(b, c, -1)
|
321 |
+
qkv = self.qkv(self.norm(x))
|
322 |
+
h = self.attention(qkv)
|
323 |
+
h = self.proj_out(h)
|
324 |
+
return (x + h).reshape(b, c, *spatial)
|
325 |
+
|
326 |
+
|
327 |
+
def count_flops_attn(model, _x, y):
|
328 |
+
"""
|
329 |
+
A counter for the `thop` package to count the operations in an
|
330 |
+
attention operation.
|
331 |
+
Meant to be used like:
|
332 |
+
macs, params = thop.profile(
|
333 |
+
model,
|
334 |
+
inputs=(inputs, timestamps),
|
335 |
+
custom_ops={QKVAttention: QKVAttention.count_flops},
|
336 |
+
)
|
337 |
+
"""
|
338 |
+
b, c, *spatial = y[0].shape
|
339 |
+
num_spatial = int(np.prod(spatial))
|
340 |
+
# We perform two matmuls with the same number of ops.
|
341 |
+
# The first computes the weight matrix, the second computes
|
342 |
+
# the combination of the value vectors.
|
343 |
+
matmul_ops = 2 * b * (num_spatial ** 2) * c
|
344 |
+
model.total_ops += th.DoubleTensor([matmul_ops])
|
345 |
+
|
346 |
+
|
347 |
+
class QKVAttentionLegacy(nn.Module):
|
348 |
+
"""
|
349 |
+
A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
|
350 |
+
"""
|
351 |
+
|
352 |
+
def __init__(self, n_heads):
|
353 |
+
super().__init__()
|
354 |
+
self.n_heads = n_heads
|
355 |
+
|
356 |
+
def forward(self, qkv):
|
357 |
+
"""
|
358 |
+
Apply QKV attention.
|
359 |
+
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
|
360 |
+
:return: an [N x (H * C) x T] tensor after attention.
|
361 |
+
"""
|
362 |
+
bs, width, length = qkv.shape
|
363 |
+
assert width % (3 * self.n_heads) == 0
|
364 |
+
ch = width // (3 * self.n_heads)
|
365 |
+
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
|
366 |
+
scale = 1 / math.sqrt(math.sqrt(ch))
|
367 |
+
weight = th.einsum(
|
368 |
+
"bct,bcs->bts", q * scale, k * scale
|
369 |
+
) # More stable with f16 than dividing afterwards
|
370 |
+
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
371 |
+
a = th.einsum("bts,bcs->bct", weight, v)
|
372 |
+
return a.reshape(bs, -1, length)
|
373 |
+
|
374 |
+
@staticmethod
|
375 |
+
def count_flops(model, _x, y):
|
376 |
+
return count_flops_attn(model, _x, y)
|
377 |
+
|
378 |
+
|
379 |
+
class QKVAttention(nn.Module):
|
380 |
+
"""
|
381 |
+
A module which performs QKV attention and splits in a different order.
|
382 |
+
"""
|
383 |
+
|
384 |
+
def __init__(self, n_heads):
|
385 |
+
super().__init__()
|
386 |
+
self.n_heads = n_heads
|
387 |
+
|
388 |
+
def forward(self, qkv):
|
389 |
+
"""
|
390 |
+
Apply QKV attention.
|
391 |
+
:param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
|
392 |
+
:return: an [N x (H * C) x T] tensor after attention.
|
393 |
+
"""
|
394 |
+
bs, width, length = qkv.shape
|
395 |
+
assert width % (3 * self.n_heads) == 0
|
396 |
+
ch = width // (3 * self.n_heads)
|
397 |
+
q, k, v = qkv.chunk(3, dim=1)
|
398 |
+
scale = 1 / math.sqrt(math.sqrt(ch))
|
399 |
+
weight = th.einsum(
|
400 |
+
"bct,bcs->bts",
|
401 |
+
(q * scale).view(bs * self.n_heads, ch, length),
|
402 |
+
(k * scale).view(bs * self.n_heads, ch, length),
|
403 |
+
) # More stable with f16 than dividing afterwards
|
404 |
+
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
405 |
+
a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
|
406 |
+
return a.reshape(bs, -1, length)
|
407 |
+
|
408 |
+
@staticmethod
|
409 |
+
def count_flops(model, _x, y):
|
410 |
+
return count_flops_attn(model, _x, y)
|
411 |
+
|
412 |
+
|
413 |
+
class UNetModel(nn.Module):
|
414 |
+
"""
|
415 |
+
The full UNet model with attention and timestep embedding.
|
416 |
+
:param in_channels: channels in the input Tensor.
|
417 |
+
:param model_channels: base channel count for the model.
|
418 |
+
:param out_channels: channels in the output Tensor.
|
419 |
+
:param num_res_blocks: number of residual blocks per downsample.
|
420 |
+
:param attention_resolutions: a collection of downsample rates at which
|
421 |
+
attention will take place. May be a set, list, or tuple.
|
422 |
+
For example, if this contains 4, then at 4x downsampling, attention
|
423 |
+
will be used.
|
424 |
+
:param dropout: the dropout probability.
|
425 |
+
:param channel_mult: channel multiplier for each level of the UNet.
|
426 |
+
:param conv_resample: if True, use learned convolutions for upsampling and
|
427 |
+
downsampling.
|
428 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
429 |
+
:param num_classes: if specified (as an int), then this model will be
|
430 |
+
class-conditional with `num_classes` classes.
|
431 |
+
:param use_checkpoint: use gradient checkpointing to reduce memory usage.
|
432 |
+
:param num_heads: the number of attention heads in each attention layer.
|
433 |
+
:param num_heads_channels: if specified, ignore num_heads and instead use
|
434 |
+
a fixed channel width per attention head.
|
435 |
+
:param num_heads_upsample: works with num_heads to set a different number
|
436 |
+
of heads for upsampling. Deprecated.
|
437 |
+
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
438 |
+
:param resblock_updown: use residual blocks for up/downsampling.
|
439 |
+
:param use_new_attention_order: use a different attention pattern for potentially
|
440 |
+
increased efficiency.
|
441 |
+
"""
|
442 |
+
|
443 |
+
def __init__(
|
444 |
+
self,
|
445 |
+
image_size,
|
446 |
+
in_channels,
|
447 |
+
model_channels,
|
448 |
+
out_channels,
|
449 |
+
num_res_blocks,
|
450 |
+
attention_resolutions,
|
451 |
+
dropout=0,
|
452 |
+
channel_mult=(1, 2, 4, 8),
|
453 |
+
conv_resample=True,
|
454 |
+
dims=2,
|
455 |
+
num_classes=None,
|
456 |
+
use_checkpoint=False,
|
457 |
+
use_fp16=False,
|
458 |
+
num_heads=1,
|
459 |
+
num_head_channels=-1,
|
460 |
+
num_heads_upsample=-1,
|
461 |
+
use_scale_shift_norm=False,
|
462 |
+
resblock_updown=False,
|
463 |
+
use_new_attention_order=False,
|
464 |
+
use_spatial_transformer=False, # custom transformer support
|
465 |
+
transformer_depth=1, # custom transformer support
|
466 |
+
context_dim=None, # custom transformer support
|
467 |
+
n_embed=None # custom support for prediction of discrete ids into codebook of first stage vq model
|
468 |
+
):
|
469 |
+
super().__init__()
|
470 |
+
|
471 |
+
if use_spatial_transformer:
|
472 |
+
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
|
473 |
+
|
474 |
+
if context_dim is not None:
|
475 |
+
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
|
476 |
+
|
477 |
+
|
478 |
+
|
479 |
+
if num_heads_upsample == -1:
|
480 |
+
num_heads_upsample = num_heads
|
481 |
+
|
482 |
+
self.image_size = image_size
|
483 |
+
self.in_channels = in_channels
|
484 |
+
self.model_channels = model_channels
|
485 |
+
self.out_channels = out_channels
|
486 |
+
self.num_res_blocks = num_res_blocks
|
487 |
+
self.attention_resolutions = attention_resolutions
|
488 |
+
self.dropout = dropout
|
489 |
+
self.channel_mult = channel_mult
|
490 |
+
self.conv_resample = conv_resample
|
491 |
+
self.num_classes = num_classes
|
492 |
+
self.use_checkpoint = use_checkpoint
|
493 |
+
self.dtype = th.float16 if use_fp16 else th.float32
|
494 |
+
self.num_heads = num_heads
|
495 |
+
self.num_head_channels = num_head_channels
|
496 |
+
self.num_heads_upsample = num_heads_upsample
|
497 |
+
self.predict_codebook_ids = n_embed is not None
|
498 |
+
|
499 |
+
time_embed_dim = model_channels * 4
|
500 |
+
self.time_embed = nn.Sequential(
|
501 |
+
linear(model_channels, time_embed_dim),
|
502 |
+
nn.SiLU(),
|
503 |
+
linear(time_embed_dim, time_embed_dim),
|
504 |
+
)
|
505 |
+
|
506 |
+
if self.num_classes is not None:
|
507 |
+
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
|
508 |
+
|
509 |
+
self.input_blocks = nn.ModuleList(
|
510 |
+
[
|
511 |
+
TimestepEmbedSequential(
|
512 |
+
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
513 |
+
)
|
514 |
+
]
|
515 |
+
)
|
516 |
+
self._feature_size = model_channels
|
517 |
+
input_block_chans = [model_channels]
|
518 |
+
ch = model_channels
|
519 |
+
ds = 1
|
520 |
+
for level, mult in enumerate(channel_mult):
|
521 |
+
for _ in range(num_res_blocks):
|
522 |
+
layers = [
|
523 |
+
ResBlock(
|
524 |
+
ch,
|
525 |
+
time_embed_dim,
|
526 |
+
dropout,
|
527 |
+
out_channels=mult * model_channels,
|
528 |
+
dims=dims,
|
529 |
+
use_checkpoint=use_checkpoint,
|
530 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
531 |
+
)
|
532 |
+
]
|
533 |
+
ch = mult * model_channels
|
534 |
+
if ds in attention_resolutions:
|
535 |
+
dim_head = ch // num_heads
|
536 |
+
layers.append(
|
537 |
+
AttentionBlock(
|
538 |
+
ch,
|
539 |
+
use_checkpoint=use_checkpoint,
|
540 |
+
num_heads=num_heads,
|
541 |
+
num_head_channels=num_head_channels,
|
542 |
+
use_new_attention_order=use_new_attention_order,
|
543 |
+
) if not use_spatial_transformer else SpatialTransformer(
|
544 |
+
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
|
545 |
+
)
|
546 |
+
)
|
547 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
548 |
+
self._feature_size += ch
|
549 |
+
input_block_chans.append(ch)
|
550 |
+
if level != len(channel_mult) - 1:
|
551 |
+
out_ch = ch
|
552 |
+
self.input_blocks.append(
|
553 |
+
TimestepEmbedSequential(
|
554 |
+
ResBlock(
|
555 |
+
ch,
|
556 |
+
time_embed_dim,
|
557 |
+
dropout,
|
558 |
+
out_channels=out_ch,
|
559 |
+
dims=dims,
|
560 |
+
use_checkpoint=use_checkpoint,
|
561 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
562 |
+
down=True,
|
563 |
+
)
|
564 |
+
if resblock_updown
|
565 |
+
else Downsample(
|
566 |
+
ch, conv_resample, dims=dims, out_channels=out_ch
|
567 |
+
)
|
568 |
+
)
|
569 |
+
)
|
570 |
+
ch = out_ch
|
571 |
+
input_block_chans.append(ch)
|
572 |
+
ds *= 2
|
573 |
+
self._feature_size += ch
|
574 |
+
|
575 |
+
dim_head = ch // num_heads
|
576 |
+
self.middle_block = TimestepEmbedSequential(
|
577 |
+
ResBlock(
|
578 |
+
ch,
|
579 |
+
time_embed_dim,
|
580 |
+
dropout,
|
581 |
+
dims=dims,
|
582 |
+
use_checkpoint=use_checkpoint,
|
583 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
584 |
+
),
|
585 |
+
AttentionBlock(
|
586 |
+
ch,
|
587 |
+
use_checkpoint=use_checkpoint,
|
588 |
+
num_heads=num_heads,
|
589 |
+
num_head_channels=num_head_channels,
|
590 |
+
use_new_attention_order=use_new_attention_order,
|
591 |
+
) if not use_spatial_transformer else SpatialTransformer(
|
592 |
+
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
|
593 |
+
),
|
594 |
+
ResBlock(
|
595 |
+
ch,
|
596 |
+
time_embed_dim,
|
597 |
+
dropout,
|
598 |
+
dims=dims,
|
599 |
+
use_checkpoint=use_checkpoint,
|
600 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
601 |
+
),
|
602 |
+
)
|
603 |
+
self._feature_size += ch
|
604 |
+
|
605 |
+
self.output_blocks = nn.ModuleList([])
|
606 |
+
for level, mult in list(enumerate(channel_mult))[::-1]:
|
607 |
+
for i in range(num_res_blocks + 1):
|
608 |
+
ich = input_block_chans.pop()
|
609 |
+
layers = [
|
610 |
+
ResBlock(
|
611 |
+
ch + ich,
|
612 |
+
time_embed_dim,
|
613 |
+
dropout,
|
614 |
+
out_channels=model_channels * mult,
|
615 |
+
dims=dims,
|
616 |
+
use_checkpoint=use_checkpoint,
|
617 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
618 |
+
)
|
619 |
+
]
|
620 |
+
ch = model_channels * mult
|
621 |
+
if ds in attention_resolutions:
|
622 |
+
dim_head = ch // num_heads
|
623 |
+
layers.append(
|
624 |
+
AttentionBlock(
|
625 |
+
ch,
|
626 |
+
use_checkpoint=use_checkpoint,
|
627 |
+
num_heads=num_heads_upsample,
|
628 |
+
num_head_channels=num_head_channels,
|
629 |
+
use_new_attention_order=use_new_attention_order,
|
630 |
+
) if not use_spatial_transformer else SpatialTransformer(
|
631 |
+
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
|
632 |
+
)
|
633 |
+
)
|
634 |
+
if level and i == num_res_blocks:
|
635 |
+
out_ch = ch
|
636 |
+
layers.append(
|
637 |
+
ResBlock(
|
638 |
+
ch,
|
639 |
+
time_embed_dim,
|
640 |
+
dropout,
|
641 |
+
out_channels=out_ch,
|
642 |
+
dims=dims,
|
643 |
+
use_checkpoint=use_checkpoint,
|
644 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
645 |
+
up=True,
|
646 |
+
)
|
647 |
+
if resblock_updown
|
648 |
+
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
649 |
+
)
|
650 |
+
ds //= 2
|
651 |
+
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
652 |
+
self._feature_size += ch
|
653 |
+
|
654 |
+
self.out = nn.Sequential(
|
655 |
+
normalization(ch),
|
656 |
+
nn.SiLU(),
|
657 |
+
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
|
658 |
+
)
|
659 |
+
if self.predict_codebook_ids:
|
660 |
+
self.id_predictor = nn.Sequential(
|
661 |
+
normalization(ch),
|
662 |
+
conv_nd(dims, model_channels, n_embed, 1),
|
663 |
+
#nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
|
664 |
+
)
|
665 |
+
|
666 |
+
def convert_to_fp16(self):
|
667 |
+
"""
|
668 |
+
Convert the torso of the model to float16.
|
669 |
+
"""
|
670 |
+
self.input_blocks.apply(convert_module_to_f16)
|
671 |
+
self.middle_block.apply(convert_module_to_f16)
|
672 |
+
self.output_blocks.apply(convert_module_to_f16)
|
673 |
+
|
674 |
+
def convert_to_fp32(self):
|
675 |
+
"""
|
676 |
+
Convert the torso of the model to float32.
|
677 |
+
"""
|
678 |
+
self.input_blocks.apply(convert_module_to_f32)
|
679 |
+
self.middle_block.apply(convert_module_to_f32)
|
680 |
+
self.output_blocks.apply(convert_module_to_f32)
|
681 |
+
|
682 |
+
def forward(self, x, timesteps=None, context=None, y=None,**kwargs):
|
683 |
+
"""
|
684 |
+
Apply the model to an input batch.
|
685 |
+
:param x: an [N x C x ...] Tensor of inputs.
|
686 |
+
:param timesteps: a 1-D batch of timesteps.
|
687 |
+
:param context: conditioning plugged in via crossattn
|
688 |
+
:param y: an [N] Tensor of labels, if class-conditional.
|
689 |
+
:return: an [N x C x ...] Tensor of outputs.
|
690 |
+
"""
|
691 |
+
assert (y is not None) == (
|
692 |
+
self.num_classes is not None
|
693 |
+
), "must specify y if and only if the model is class-conditional"
|
694 |
+
assert timesteps is not None, 'need to implement no-timestep usage'
|
695 |
+
hs = []
|
696 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
697 |
+
emb = self.time_embed(t_emb)
|
698 |
+
|
699 |
+
if self.num_classes is not None:
|
700 |
+
assert y.shape == (x.shape[0],)
|
701 |
+
emb = emb + self.label_emb(y)
|
702 |
+
|
703 |
+
h = x.type(self.dtype)
|
704 |
+
for module in self.input_blocks:
|
705 |
+
h = module(h, emb, context)
|
706 |
+
hs.append(h)
|
707 |
+
h = self.middle_block(h, emb, context)
|
708 |
+
for module in self.output_blocks:
|
709 |
+
h = th.cat([h, hs.pop()], dim=1)
|
710 |
+
h = module(h, emb, context)
|
711 |
+
h = h.type(x.dtype)
|
712 |
+
if self.predict_codebook_ids:
|
713 |
+
#return self.out(h), self.id_predictor(h)
|
714 |
+
return self.id_predictor(h)
|
715 |
+
else:
|
716 |
+
return self.out(h)
|
717 |
+
|
718 |
+
|
719 |
+
class EncoderUNetModel(nn.Module):
|
720 |
+
# TODO: do we use it ?
|
721 |
+
"""
|
722 |
+
The half UNet model with attention and timestep embedding.
|
723 |
+
For usage, see UNet.
|
724 |
+
"""
|
725 |
+
|
726 |
+
def __init__(
|
727 |
+
self,
|
728 |
+
image_size,
|
729 |
+
in_channels,
|
730 |
+
model_channels,
|
731 |
+
out_channels,
|
732 |
+
num_res_blocks,
|
733 |
+
attention_resolutions,
|
734 |
+
dropout=0,
|
735 |
+
channel_mult=(1, 2, 4, 8),
|
736 |
+
conv_resample=True,
|
737 |
+
dims=2,
|
738 |
+
use_checkpoint=False,
|
739 |
+
use_fp16=False,
|
740 |
+
num_heads=1,
|
741 |
+
num_head_channels=-1,
|
742 |
+
num_heads_upsample=-1,
|
743 |
+
use_scale_shift_norm=False,
|
744 |
+
resblock_updown=False,
|
745 |
+
use_new_attention_order=False,
|
746 |
+
pool="adaptive",
|
747 |
+
*args,
|
748 |
+
**kwargs
|
749 |
+
):
|
750 |
+
super().__init__()
|
751 |
+
|
752 |
+
if num_heads_upsample == -1:
|
753 |
+
num_heads_upsample = num_heads
|
754 |
+
|
755 |
+
self.in_channels = in_channels
|
756 |
+
self.model_channels = model_channels
|
757 |
+
self.out_channels = out_channels
|
758 |
+
self.num_res_blocks = num_res_blocks
|
759 |
+
self.attention_resolutions = attention_resolutions
|
760 |
+
self.dropout = dropout
|
761 |
+
self.channel_mult = channel_mult
|
762 |
+
self.conv_resample = conv_resample
|
763 |
+
self.use_checkpoint = use_checkpoint
|
764 |
+
self.dtype = th.float16 if use_fp16 else th.float32
|
765 |
+
self.num_heads = num_heads
|
766 |
+
self.num_head_channels = num_head_channels
|
767 |
+
self.num_heads_upsample = num_heads_upsample
|
768 |
+
|
769 |
+
time_embed_dim = model_channels * 4
|
770 |
+
self.time_embed = nn.Sequential(
|
771 |
+
linear(model_channels, time_embed_dim),
|
772 |
+
nn.SiLU(),
|
773 |
+
linear(time_embed_dim, time_embed_dim),
|
774 |
+
)
|
775 |
+
|
776 |
+
self.input_blocks = nn.ModuleList(
|
777 |
+
[
|
778 |
+
TimestepEmbedSequential(
|
779 |
+
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
780 |
+
)
|
781 |
+
]
|
782 |
+
)
|
783 |
+
self._feature_size = model_channels
|
784 |
+
input_block_chans = [model_channels]
|
785 |
+
ch = model_channels
|
786 |
+
ds = 1
|
787 |
+
for level, mult in enumerate(channel_mult):
|
788 |
+
for _ in range(num_res_blocks):
|
789 |
+
layers = [
|
790 |
+
ResBlock(
|
791 |
+
ch,
|
792 |
+
time_embed_dim,
|
793 |
+
dropout,
|
794 |
+
out_channels=mult * model_channels,
|
795 |
+
dims=dims,
|
796 |
+
use_checkpoint=use_checkpoint,
|
797 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
798 |
+
)
|
799 |
+
]
|
800 |
+
ch = mult * model_channels
|
801 |
+
if ds in attention_resolutions:
|
802 |
+
layers.append(
|
803 |
+
AttentionBlock(
|
804 |
+
ch,
|
805 |
+
use_checkpoint=use_checkpoint,
|
806 |
+
num_heads=num_heads,
|
807 |
+
num_head_channels=num_head_channels,
|
808 |
+
use_new_attention_order=use_new_attention_order,
|
809 |
+
)
|
810 |
+
)
|
811 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
812 |
+
self._feature_size += ch
|
813 |
+
input_block_chans.append(ch)
|
814 |
+
if level != len(channel_mult) - 1:
|
815 |
+
out_ch = ch
|
816 |
+
self.input_blocks.append(
|
817 |
+
TimestepEmbedSequential(
|
818 |
+
ResBlock(
|
819 |
+
ch,
|
820 |
+
time_embed_dim,
|
821 |
+
dropout,
|
822 |
+
out_channels=out_ch,
|
823 |
+
dims=dims,
|
824 |
+
use_checkpoint=use_checkpoint,
|
825 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
826 |
+
down=True,
|
827 |
+
)
|
828 |
+
if resblock_updown
|
829 |
+
else Downsample(
|
830 |
+
ch, conv_resample, dims=dims, out_channels=out_ch
|
831 |
+
)
|
832 |
+
)
|
833 |
+
)
|
834 |
+
ch = out_ch
|
835 |
+
input_block_chans.append(ch)
|
836 |
+
ds *= 2
|
837 |
+
self._feature_size += ch
|
838 |
+
|
839 |
+
self.middle_block = TimestepEmbedSequential(
|
840 |
+
ResBlock(
|
841 |
+
ch,
|
842 |
+
time_embed_dim,
|
843 |
+
dropout,
|
844 |
+
dims=dims,
|
845 |
+
use_checkpoint=use_checkpoint,
|
846 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
847 |
+
),
|
848 |
+
AttentionBlock(
|
849 |
+
ch,
|
850 |
+
use_checkpoint=use_checkpoint,
|
851 |
+
num_heads=num_heads,
|
852 |
+
num_head_channels=num_head_channels,
|
853 |
+
use_new_attention_order=use_new_attention_order,
|
854 |
+
),
|
855 |
+
ResBlock(
|
856 |
+
ch,
|
857 |
+
time_embed_dim,
|
858 |
+
dropout,
|
859 |
+
dims=dims,
|
860 |
+
use_checkpoint=use_checkpoint,
|
861 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
862 |
+
),
|
863 |
+
)
|
864 |
+
self._feature_size += ch
|
865 |
+
self.pool = pool
|
866 |
+
if pool == "adaptive":
|
867 |
+
self.out = nn.Sequential(
|
868 |
+
normalization(ch),
|
869 |
+
nn.SiLU(),
|
870 |
+
nn.AdaptiveAvgPool2d((1, 1)),
|
871 |
+
zero_module(conv_nd(dims, ch, out_channels, 1)),
|
872 |
+
nn.Flatten(),
|
873 |
+
)
|
874 |
+
elif pool == "attention":
|
875 |
+
assert num_head_channels != -1
|
876 |
+
self.out = nn.Sequential(
|
877 |
+
normalization(ch),
|
878 |
+
nn.SiLU(),
|
879 |
+
AttentionPool2d(
|
880 |
+
(image_size // ds), ch, num_head_channels, out_channels
|
881 |
+
),
|
882 |
+
)
|
883 |
+
elif pool == "spatial":
|
884 |
+
self.out = nn.Sequential(
|
885 |
+
nn.Linear(self._feature_size, 2048),
|
886 |
+
nn.ReLU(),
|
887 |
+
nn.Linear(2048, self.out_channels),
|
888 |
+
)
|
889 |
+
elif pool == "spatial_v2":
|
890 |
+
self.out = nn.Sequential(
|
891 |
+
nn.Linear(self._feature_size, 2048),
|
892 |
+
normalization(2048),
|
893 |
+
nn.SiLU(),
|
894 |
+
nn.Linear(2048, self.out_channels),
|
895 |
+
)
|
896 |
+
else:
|
897 |
+
raise NotImplementedError(f"Unexpected {pool} pooling")
|
898 |
+
|
899 |
+
def convert_to_fp16(self):
|
900 |
+
"""
|
901 |
+
Convert the torso of the model to float16.
|
902 |
+
"""
|
903 |
+
self.input_blocks.apply(convert_module_to_f16)
|
904 |
+
self.middle_block.apply(convert_module_to_f16)
|
905 |
+
|
906 |
+
def convert_to_fp32(self):
|
907 |
+
"""
|
908 |
+
Convert the torso of the model to float32.
|
909 |
+
"""
|
910 |
+
self.input_blocks.apply(convert_module_to_f32)
|
911 |
+
self.middle_block.apply(convert_module_to_f32)
|
912 |
+
|
913 |
+
def forward(self, x, timesteps):
|
914 |
+
"""
|
915 |
+
Apply the model to an input batch.
|
916 |
+
:param x: an [N x C x ...] Tensor of inputs.
|
917 |
+
:param timesteps: a 1-D batch of timesteps.
|
918 |
+
:return: an [N x K] Tensor of outputs.
|
919 |
+
"""
|
920 |
+
emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
|
921 |
+
|
922 |
+
results = []
|
923 |
+
h = x.type(self.dtype)
|
924 |
+
for module in self.input_blocks:
|
925 |
+
h = module(h, emb)
|
926 |
+
if self.pool.startswith("spatial"):
|
927 |
+
results.append(h.type(x.dtype).mean(dim=(2, 3)))
|
928 |
+
h = self.middle_block(h, emb)
|
929 |
+
if self.pool.startswith("spatial"):
|
930 |
+
results.append(h.type(x.dtype).mean(dim=(2, 3)))
|
931 |
+
h = th.cat(results, axis=-1)
|
932 |
+
return self.out(h)
|
933 |
+
else:
|
934 |
+
h = h.type(x.dtype)
|
935 |
+
return self.out(h)
|
936 |
+
|
ldm/modules/diffusionmodules/util.py
ADDED
@@ -0,0 +1,261 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# adopted from
|
2 |
+
# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
|
3 |
+
# and
|
4 |
+
# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
|
5 |
+
# and
|
6 |
+
# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
|
7 |
+
#
|
8 |
+
# thanks!
|
9 |
+
|
10 |
+
|
11 |
+
import os
|
12 |
+
import math
|
13 |
+
import torch
|
14 |
+
import torch.nn as nn
|
15 |
+
import numpy as np
|
16 |
+
from einops import repeat
|
17 |
+
|
18 |
+
from ldm.util import instantiate_from_config
|
19 |
+
|
20 |
+
|
21 |
+
def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
22 |
+
if schedule == "linear":
|
23 |
+
betas = (
|
24 |
+
torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
|
25 |
+
)
|
26 |
+
|
27 |
+
elif schedule == "cosine":
|
28 |
+
timesteps = (
|
29 |
+
torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
|
30 |
+
)
|
31 |
+
alphas = timesteps / (1 + cosine_s) * np.pi / 2
|
32 |
+
alphas = torch.cos(alphas).pow(2)
|
33 |
+
alphas = alphas / alphas[0]
|
34 |
+
betas = 1 - alphas[1:] / alphas[:-1]
|
35 |
+
betas = np.clip(betas, a_min=0, a_max=0.999)
|
36 |
+
|
37 |
+
elif schedule == "sqrt_linear":
|
38 |
+
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
|
39 |
+
elif schedule == "sqrt":
|
40 |
+
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
|
41 |
+
else:
|
42 |
+
raise ValueError(f"schedule '{schedule}' unknown.")
|
43 |
+
return betas.numpy()
|
44 |
+
|
45 |
+
|
46 |
+
def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True):
|
47 |
+
if ddim_discr_method == 'uniform':
|
48 |
+
c = num_ddpm_timesteps // num_ddim_timesteps
|
49 |
+
ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
|
50 |
+
elif ddim_discr_method == 'quad':
|
51 |
+
ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int)
|
52 |
+
else:
|
53 |
+
raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')
|
54 |
+
|
55 |
+
# assert ddim_timesteps.shape[0] == num_ddim_timesteps
|
56 |
+
# add one to get the final alpha values right (the ones from first scale to data during sampling)
|
57 |
+
steps_out = ddim_timesteps + 1
|
58 |
+
if verbose:
|
59 |
+
print(f'Selected timesteps for ddim sampler: {steps_out}')
|
60 |
+
return steps_out
|
61 |
+
|
62 |
+
|
63 |
+
def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
|
64 |
+
# select alphas for computing the variance schedule
|
65 |
+
alphas = alphacums[ddim_timesteps]
|
66 |
+
alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
|
67 |
+
|
68 |
+
# according the the formula provided in https://arxiv.org/abs/2010.02502
|
69 |
+
sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
|
70 |
+
if verbose:
|
71 |
+
print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
|
72 |
+
print(f'For the chosen value of eta, which is {eta}, '
|
73 |
+
f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
|
74 |
+
return sigmas, alphas, alphas_prev
|
75 |
+
|
76 |
+
|
77 |
+
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
|
78 |
+
"""
|
79 |
+
Create a beta schedule that discretizes the given alpha_t_bar function,
|
80 |
+
which defines the cumulative product of (1-beta) over time from t = [0,1].
|
81 |
+
:param num_diffusion_timesteps: the number of betas to produce.
|
82 |
+
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and
|
83 |
+
produces the cumulative product of (1-beta) up to that
|
84 |
+
part of the diffusion process.
|
85 |
+
:param max_beta: the maximum beta to use; use values lower than 1 to
|
86 |
+
prevent singularities.
|
87 |
+
"""
|
88 |
+
betas = []
|
89 |
+
for i in range(num_diffusion_timesteps):
|
90 |
+
t1 = i / num_diffusion_timesteps
|
91 |
+
t2 = (i + 1) / num_diffusion_timesteps
|
92 |
+
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
|
93 |
+
return np.array(betas)
|
94 |
+
|
95 |
+
|
96 |
+
def extract_into_tensor(a, t, x_shape):
|
97 |
+
b, *_ = t.shape
|
98 |
+
out = a.gather(-1, t)
|
99 |
+
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
|
100 |
+
|
101 |
+
|
102 |
+
def checkpoint(func, inputs, params, flag):
|
103 |
+
"""
|
104 |
+
Evaluate a function without caching intermediate activations, allowing for
|
105 |
+
reduced memory at the expense of extra compute in the backward pass.
|
106 |
+
:param func: the function to evaluate.
|
107 |
+
:param inputs: the argument sequence to pass to `func`.
|
108 |
+
:param params: a sequence of parameters `func` depends on but does not
|
109 |
+
explicitly take as arguments.
|
110 |
+
:param flag: if False, disable gradient checkpointing.
|
111 |
+
"""
|
112 |
+
if flag:
|
113 |
+
args = tuple(inputs) + tuple(params)
|
114 |
+
return CheckpointFunction.apply(func, len(inputs), *args)
|
115 |
+
else:
|
116 |
+
return func(*inputs)
|
117 |
+
|
118 |
+
|
119 |
+
class CheckpointFunction(torch.autograd.Function):
|
120 |
+
@staticmethod
|
121 |
+
def forward(ctx, run_function, length, *args):
|
122 |
+
ctx.run_function = run_function
|
123 |
+
ctx.input_tensors = list(args[:length])
|
124 |
+
ctx.input_params = list(args[length:])
|
125 |
+
|
126 |
+
with torch.no_grad():
|
127 |
+
output_tensors = ctx.run_function(*ctx.input_tensors)
|
128 |
+
return output_tensors
|
129 |
+
|
130 |
+
@staticmethod
|
131 |
+
def backward(ctx, *output_grads):
|
132 |
+
ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
|
133 |
+
with torch.enable_grad():
|
134 |
+
# Fixes a bug where the first op in run_function modifies the
|
135 |
+
# Tensor storage in place, which is not allowed for detach()'d
|
136 |
+
# Tensors.
|
137 |
+
shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
|
138 |
+
output_tensors = ctx.run_function(*shallow_copies)
|
139 |
+
input_grads = torch.autograd.grad(
|
140 |
+
output_tensors,
|
141 |
+
ctx.input_tensors + ctx.input_params,
|
142 |
+
output_grads,
|
143 |
+
allow_unused=True,
|
144 |
+
)
|
145 |
+
del ctx.input_tensors
|
146 |
+
del ctx.input_params
|
147 |
+
del output_tensors
|
148 |
+
return (None, None) + input_grads
|
149 |
+
|
150 |
+
|
151 |
+
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
|
152 |
+
"""
|
153 |
+
Create sinusoidal timestep embeddings.
|
154 |
+
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
155 |
+
These may be fractional.
|
156 |
+
:param dim: the dimension of the output.
|
157 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
158 |
+
:return: an [N x dim] Tensor of positional embeddings.
|
159 |
+
"""
|
160 |
+
if not repeat_only:
|
161 |
+
half = dim // 2
|
162 |
+
freqs = torch.exp(
|
163 |
+
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
|
164 |
+
).to(device=timesteps.device)
|
165 |
+
args = timesteps[:, None].float() * freqs[None]
|
166 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
167 |
+
if dim % 2:
|
168 |
+
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
169 |
+
else:
|
170 |
+
embedding = repeat(timesteps, 'b -> b d', d=dim)
|
171 |
+
return embedding
|
172 |
+
|
173 |
+
|
174 |
+
def zero_module(module):
|
175 |
+
"""
|
176 |
+
Zero out the parameters of a module and return it.
|
177 |
+
"""
|
178 |
+
for p in module.parameters():
|
179 |
+
p.detach().zero_()
|
180 |
+
return module
|
181 |
+
|
182 |
+
|
183 |
+
def scale_module(module, scale):
|
184 |
+
"""
|
185 |
+
Scale the parameters of a module and return it.
|
186 |
+
"""
|
187 |
+
for p in module.parameters():
|
188 |
+
p.detach().mul_(scale)
|
189 |
+
return module
|
190 |
+
|
191 |
+
|
192 |
+
def mean_flat(tensor):
|
193 |
+
"""
|
194 |
+
Take the mean over all non-batch dimensions.
|
195 |
+
"""
|
196 |
+
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
197 |
+
|
198 |
+
|
199 |
+
def normalization(channels):
|
200 |
+
"""
|
201 |
+
Make a standard normalization layer.
|
202 |
+
:param channels: number of input channels.
|
203 |
+
:return: an nn.Module for normalization.
|
204 |
+
"""
|
205 |
+
return GroupNorm32(32, channels)
|
206 |
+
|
207 |
+
|
208 |
+
# PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
|
209 |
+
class SiLU(nn.Module):
|
210 |
+
def forward(self, x):
|
211 |
+
return x * torch.sigmoid(x)
|
212 |
+
|
213 |
+
|
214 |
+
class GroupNorm32(nn.GroupNorm):
|
215 |
+
def forward(self, x):
|
216 |
+
return super().forward(x.float()).type(x.dtype)
|
217 |
+
|
218 |
+
def conv_nd(dims, *args, **kwargs):
|
219 |
+
"""
|
220 |
+
Create a 1D, 2D, or 3D convolution module.
|
221 |
+
"""
|
222 |
+
if dims == 1:
|
223 |
+
return nn.Conv1d(*args, **kwargs)
|
224 |
+
elif dims == 2:
|
225 |
+
return nn.Conv2d(*args, **kwargs)
|
226 |
+
elif dims == 3:
|
227 |
+
return nn.Conv3d(*args, **kwargs)
|
228 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
229 |
+
|
230 |
+
|
231 |
+
def linear(*args, **kwargs):
|
232 |
+
"""
|
233 |
+
Create a linear module.
|
234 |
+
"""
|
235 |
+
return nn.Linear(*args, **kwargs)
|
236 |
+
|
237 |
+
|
238 |
+
def avg_pool_nd(dims, *args, **kwargs):
|
239 |
+
"""
|
240 |
+
Create a 1D, 2D, or 3D average pooling module.
|
241 |
+
"""
|
242 |
+
if dims == 1:
|
243 |
+
return nn.AvgPool1d(*args, **kwargs)
|
244 |
+
elif dims == 2:
|
245 |
+
return nn.AvgPool2d(*args, **kwargs)
|
246 |
+
elif dims == 3:
|
247 |
+
return nn.AvgPool3d(*args, **kwargs)
|
248 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
249 |
+
|
250 |
+
|
251 |
+
class HybridConditioner(nn.Module):
|
252 |
+
|
253 |
+
def __init__(self, c_concat_config, c_crossattn_config):
|
254 |
+
super().__init__()
|
255 |
+
self.concat_conditioner = instantiate_from_config(c_concat_config)
|
256 |
+
self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
|
257 |
+
|
258 |
+
def forward(self, c_concat, c_crossattn):
|
259 |
+
c_concat = self.concat_conditioner(c_concat)
|
260 |
+
c_crossattn = self.crossattn_conditioner(c_crossattn)
|
261 |
+
return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
|
ldm/modules/distributions/__init__.py
ADDED
File without changes
|
ldm/modules/distributions/distributions.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
|
5 |
+
class AbstractDistribution:
|
6 |
+
def sample(self):
|
7 |
+
raise NotImplementedError()
|
8 |
+
|
9 |
+
def mode(self):
|
10 |
+
raise NotImplementedError()
|
11 |
+
|
12 |
+
|
13 |
+
class DiracDistribution(AbstractDistribution):
|
14 |
+
def __init__(self, value):
|
15 |
+
self.value = value
|
16 |
+
|
17 |
+
def sample(self):
|
18 |
+
return self.value
|
19 |
+
|
20 |
+
def mode(self):
|
21 |
+
return self.value
|
22 |
+
|
23 |
+
|
24 |
+
class DiagonalGaussianDistribution(object):
|
25 |
+
def __init__(self, parameters, deterministic=False):
|
26 |
+
self.parameters = parameters
|
27 |
+
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
|
28 |
+
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
|
29 |
+
self.deterministic = deterministic
|
30 |
+
self.std = torch.exp(0.5 * self.logvar)
|
31 |
+
self.var = torch.exp(self.logvar)
|
32 |
+
if self.deterministic:
|
33 |
+
self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)
|
34 |
+
|
35 |
+
def sample(self):
|
36 |
+
x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device)
|
37 |
+
return x
|
38 |
+
|
39 |
+
def kl(self, other=None):
|
40 |
+
if self.deterministic:
|
41 |
+
return torch.Tensor([0.])
|
42 |
+
else:
|
43 |
+
if other is None:
|
44 |
+
return 0.5 * torch.sum(torch.pow(self.mean, 2)
|
45 |
+
+ self.var - 1.0 - self.logvar,
|
46 |
+
dim=[1, 2, 3])
|
47 |
+
else:
|
48 |
+
return 0.5 * torch.sum(
|
49 |
+
torch.pow(self.mean - other.mean, 2) / other.var
|
50 |
+
+ self.var / other.var - 1.0 - self.logvar + other.logvar,
|
51 |
+
dim=[1, 2, 3])
|
52 |
+
|
53 |
+
def nll(self, sample, dims=[1,2,3]):
|
54 |
+
if self.deterministic:
|
55 |
+
return torch.Tensor([0.])
|
56 |
+
logtwopi = np.log(2.0 * np.pi)
|
57 |
+
return 0.5 * torch.sum(
|
58 |
+
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
|
59 |
+
dim=dims)
|
60 |
+
|
61 |
+
def mode(self):
|
62 |
+
return self.mean
|
63 |
+
|
64 |
+
|
65 |
+
def normal_kl(mean1, logvar1, mean2, logvar2):
|
66 |
+
"""
|
67 |
+
source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12
|
68 |
+
Compute the KL divergence between two gaussians.
|
69 |
+
Shapes are automatically broadcasted, so batches can be compared to
|
70 |
+
scalars, among other use cases.
|
71 |
+
"""
|
72 |
+
tensor = None
|
73 |
+
for obj in (mean1, logvar1, mean2, logvar2):
|
74 |
+
if isinstance(obj, torch.Tensor):
|
75 |
+
tensor = obj
|
76 |
+
break
|
77 |
+
assert tensor is not None, "at least one argument must be a Tensor"
|
78 |
+
|
79 |
+
# Force variances to be Tensors. Broadcasting helps convert scalars to
|
80 |
+
# Tensors, but it does not work for torch.exp().
|
81 |
+
logvar1, logvar2 = [
|
82 |
+
x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor)
|
83 |
+
for x in (logvar1, logvar2)
|
84 |
+
]
|
85 |
+
|
86 |
+
return 0.5 * (
|
87 |
+
-1.0
|
88 |
+
+ logvar2
|
89 |
+
- logvar1
|
90 |
+
+ torch.exp(logvar1 - logvar2)
|
91 |
+
+ ((mean1 - mean2) ** 2) * torch.exp(-logvar2)
|
92 |
+
)
|
ldm/modules/ema.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
|
4 |
+
|
5 |
+
class LitEma(nn.Module):
|
6 |
+
def __init__(self, model, decay=0.9999, use_num_upates=True):
|
7 |
+
super().__init__()
|
8 |
+
if decay < 0.0 or decay > 1.0:
|
9 |
+
raise ValueError('Decay must be between 0 and 1')
|
10 |
+
|
11 |
+
self.m_name2s_name = {}
|
12 |
+
self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32))
|
13 |
+
self.register_buffer('num_updates', torch.tensor(0,dtype=torch.int) if use_num_upates
|
14 |
+
else torch.tensor(-1,dtype=torch.int))
|
15 |
+
|
16 |
+
for name, p in model.named_parameters():
|
17 |
+
if p.requires_grad:
|
18 |
+
#remove as '.'-character is not allowed in buffers
|
19 |
+
s_name = name.replace('.','')
|
20 |
+
self.m_name2s_name.update({name:s_name})
|
21 |
+
self.register_buffer(s_name,p.clone().detach().data)
|
22 |
+
|
23 |
+
self.collected_params = []
|
24 |
+
|
25 |
+
def forward(self,model):
|
26 |
+
decay = self.decay
|
27 |
+
|
28 |
+
if self.num_updates >= 0:
|
29 |
+
self.num_updates += 1
|
30 |
+
decay = min(self.decay,(1 + self.num_updates) / (10 + self.num_updates))
|
31 |
+
|
32 |
+
one_minus_decay = 1.0 - decay
|
33 |
+
|
34 |
+
with torch.no_grad():
|
35 |
+
m_param = dict(model.named_parameters())
|
36 |
+
shadow_params = dict(self.named_buffers())
|
37 |
+
|
38 |
+
for key in m_param:
|
39 |
+
if m_param[key].requires_grad:
|
40 |
+
sname = self.m_name2s_name[key]
|
41 |
+
shadow_params[sname] = shadow_params[sname].type_as(m_param[key])
|
42 |
+
shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key]))
|
43 |
+
else:
|
44 |
+
assert not key in self.m_name2s_name
|
45 |
+
|
46 |
+
def copy_to(self, model):
|
47 |
+
m_param = dict(model.named_parameters())
|
48 |
+
shadow_params = dict(self.named_buffers())
|
49 |
+
for key in m_param:
|
50 |
+
if m_param[key].requires_grad:
|
51 |
+
m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data)
|
52 |
+
else:
|
53 |
+
assert not key in self.m_name2s_name
|
54 |
+
|
55 |
+
def store(self, parameters):
|
56 |
+
"""
|
57 |
+
Save the current parameters for restoring later.
|
58 |
+
Args:
|
59 |
+
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
|
60 |
+
temporarily stored.
|
61 |
+
"""
|
62 |
+
self.collected_params = [param.clone() for param in parameters]
|
63 |
+
|
64 |
+
def restore(self, parameters):
|
65 |
+
"""
|
66 |
+
Restore the parameters stored with the `store` method.
|
67 |
+
Useful to validate the model with EMA parameters without affecting the
|
68 |
+
original optimization process. Store the parameters before the
|
69 |
+
`copy_to` method. After validation (or model saving), use this to
|
70 |
+
restore the former parameters.
|
71 |
+
Args:
|
72 |
+
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
|
73 |
+
updated with the stored parameters.
|
74 |
+
"""
|
75 |
+
for c_param, param in zip(self.collected_params, parameters):
|
76 |
+
param.data.copy_(c_param.data)
|