Spaces:
Running
Running
from typing import List, Tuple, Dict | |
from collections import OrderedDict | |
import gradio as gr | |
import torch | |
import torch.nn.functional as F | |
import timm | |
from timm.data import create_transform | |
from timm.models import create_model | |
from timm.utils import AttentionExtract | |
from PIL import Image | |
import numpy as np | |
import matplotlib.pyplot as plt | |
def get_attention_models() -> List[str]: | |
"""Get a list of timm models that have attention blocks.""" | |
all_models = timm.list_pretrained() | |
# FIXME Focusing on ViT models for initial impl | |
attention_models = [model for model in all_models if any([model.lower().startswith(p) for p in ('vit', 'deit', 'beit', 'eva')])] | |
return attention_models | |
def load_model(model_name: str) -> Tuple[torch.nn.Module, AttentionExtract]: | |
"""Load a model from timm and prepare it for attention extraction.""" | |
timm.layers.set_fused_attn(False) | |
model = create_model(model_name, pretrained=True) | |
model.eval() | |
extractor = AttentionExtract(model, method='fx') # can use 'hooks', can also allow specifying matching names for attention nodes or modules... | |
return model, extractor | |
def process_image( | |
image: Image.Image, | |
model: torch.nn.Module, | |
extractor: AttentionExtract | |
) -> Dict[str, torch.Tensor]: | |
"""Process the input image and get the attention maps.""" | |
# Get the correct transform for the model | |
config = model.pretrained_cfg | |
transform = create_transform( | |
input_size=config['input_size'], | |
crop_pct=config['crop_pct'], | |
mean=config['mean'], | |
std=config['std'], | |
interpolation=config['interpolation'], | |
is_training=False | |
) | |
# Preprocess the image | |
tensor = transform(image).unsqueeze(0) | |
# Extract attention maps | |
attention_maps = extractor(tensor) | |
return attention_maps | |
def apply_mask(image: np.ndarray, mask: np.ndarray, color: Tuple[float, float, float], alpha: float = 0.5) -> np.ndarray: | |
# Ensure mask and image have the same shape | |
mask = mask[:, :, np.newaxis] | |
mask = np.repeat(mask, 3, axis=2) | |
# Convert color to numpy array | |
color = np.array(color) | |
# Apply mask | |
masked_image = image * (1 - alpha * mask) + alpha * mask * color[np.newaxis, np.newaxis, :] * 255 | |
return masked_image.astype(np.uint8) | |
def rollout(attentions, discard_ratio, head_fusion, num_prefix_tokens=1): | |
# based on https://github.com/jacobgil/vit-explain/blob/main/vit_rollout.py | |
result = torch.eye(attentions[0].size(-1)) | |
with torch.no_grad(): | |
for attention in attentions: | |
if head_fusion.startswith('mean'): | |
# mean_std fusion doesn't appear to make sense with rollout | |
attention_heads_fused = attention.mean(dim=0) | |
elif head_fusion == "max": | |
attention_heads_fused = attention.amax(dim=0) | |
elif head_fusion == "min": | |
attention_heads_fused = attention.amin(dim=0) | |
else: | |
raise ValueError("Attention head fusion type Not supported") | |
# Discard the lowest attentions, but don't discard the prefix tokens | |
flat = attention_heads_fused.view(-1) | |
_, indices = flat.topk(int(flat.size(-1 )* discard_ratio), -1, False) | |
indices = indices[indices >= num_prefix_tokens] | |
flat[indices] = 0 | |
I = torch.eye(attention_heads_fused.size(-1)) | |
a = (attention_heads_fused + 1.0 * I) / 2 | |
a = a / a.sum(dim=-1) | |
result = torch.matmul(a, result) | |
# Look at the total attention between the prefix tokens (usually class tokens) | |
# and the image patches | |
# FIXME this is token 0 vs non-prefix right now, need to cover other cases (> 1 prefix, no prefix, etc) | |
mask = result[0, num_prefix_tokens:] | |
width = int(mask.size(-1) ** 0.5) | |
mask = mask.reshape(width, width).numpy() | |
mask = mask / np.max(mask) | |
return mask | |
def visualize_attention( | |
image: Image.Image, | |
model_name: str, | |
head_fusion: str, | |
discard_ratio: float, | |
) -> Tuple[List[Image.Image], Image.Image]: | |
"""Visualize attention maps and rollout for the given image and model.""" | |
model, extractor = load_model(model_name) | |
attention_maps = process_image(image, model, extractor) | |
# FIXME handle wider range of models that may not have num_prefix_tokens attr | |
num_prefix_tokens = getattr(model, 'num_prefix_tokens', 1) # Default to 1 class token if not specified | |
# Convert PIL Image to numpy array | |
image_np = np.array(image) | |
# Create visualizations | |
visualizations = [] | |
attentions_for_rollout = [] | |
for layer_name, attn_map in attention_maps.items(): | |
print(f"Attention map shape for {layer_name}: {attn_map.shape}") | |
attn_map = attn_map[0] # Remove batch dimension | |
attentions_for_rollout.append(attn_map) | |
attn_map = attn_map[:, :, num_prefix_tokens:] # Remove prefix tokens for visualization | |
if head_fusion == 'mean_std': | |
attn_map = attn_map.mean(0) / attn_map.std(0) | |
elif head_fusion == 'mean': | |
attn_map = attn_map.mean(0) | |
elif head_fusion == 'max': | |
attn_map = attn_map.amax(0) | |
elif head_fusion == 'min': | |
attn_map = attn_map.amin(0) | |
else: | |
raise ValueError(f"Invalid head fusion method: {head_fusion}") | |
# Use the first token's attention (usually the class token) | |
# FIXME handle different prefix token scenarios | |
attn_map = attn_map[0] | |
# Reshape the attention map to 2D | |
num_patches = int(attn_map.shape[0] ** 0.5) | |
attn_map = attn_map.reshape(num_patches, num_patches) | |
# Interpolate to match image size | |
attn_map = torch.tensor(attn_map).unsqueeze(0).unsqueeze(0) | |
attn_map = F.interpolate(attn_map, size=(image_np.shape[0], image_np.shape[1]), mode='bilinear', align_corners=False) | |
attn_map = attn_map.squeeze().cpu().numpy() | |
# Normalize attention map | |
attn_map = (attn_map - attn_map.min()) / (attn_map.max() - attn_map.min()) | |
# Create visualization | |
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20, 10)) | |
# Original image | |
ax1.imshow(image_np) | |
ax1.set_title("Original Image") | |
ax1.axis('off') | |
# Attention map overlay | |
masked_image = apply_mask(image_np, attn_map, color=(1, 0, 0)) # Red mask | |
ax2.imshow(masked_image) | |
ax2.set_title(f'Attention Map for {layer_name}') | |
ax2.axis('off') | |
plt.tight_layout() | |
# Convert plot to image | |
fig.canvas.draw() | |
vis_image = Image.frombytes('RGB', fig.canvas.get_width_height(), fig.canvas.tostring_rgb()) | |
visualizations.append(vis_image) | |
plt.close(fig) | |
# Calculate rollout | |
rollout_mask = rollout(attentions_for_rollout, discard_ratio, head_fusion, num_prefix_tokens) | |
# Create rollout visualization | |
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20, 10)) | |
# Original image | |
ax1.imshow(image_np) | |
ax1.set_title("Original Image") | |
ax1.axis('off') | |
# Rollout overlay | |
rollout_mask_pil = Image.fromarray((rollout_mask * 255).astype(np.uint8)) | |
rollout_mask_resized = np.array(rollout_mask_pil.resize((image_np.shape[1], image_np.shape[0]), Image.BICUBIC)) / 255.0 | |
masked_image = apply_mask(image_np, rollout_mask_resized, color=(1, 0, 0)) # Red mask | |
ax2.imshow(masked_image) | |
ax2.set_title('Attention Rollout') | |
ax2.axis('off') | |
plt.tight_layout() | |
# Convert plot to image | |
fig.canvas.draw() | |
rollout_image = Image.frombytes('RGB', fig.canvas.get_width_height(), fig.canvas.tostring_rgb()) | |
plt.close(fig) | |
return visualizations, rollout_image | |
# Create Gradio interface | |
iface = gr.Interface( | |
fn=visualize_attention, | |
inputs=[ | |
gr.Image(type="pil", label="Input Image"), | |
gr.Dropdown(choices=get_attention_models(), label="Select Model"), | |
gr.Dropdown( | |
choices=['mean_std', 'mean', 'max', 'min'], | |
label="Head Fusion Method", | |
value='mean' # Default value | |
), | |
gr.Slider(0, 1, 0.9, label="Discard Ratio", info="Ratio of lowest attentions to discard") | |
], | |
outputs=[ | |
gr.Gallery(label="Attention Maps"), | |
gr.Image(label="Attention Rollout") | |
], | |
title="Attention Map Visualizer for timm Models", | |
description="Upload an image and select a timm model to visualize its attention maps." | |
) | |
iface.launch() |