File size: 23,927 Bytes
ed452d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51fe9b1
 
ed452d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
# -*- coding: utf-8 -*-
"""Kopie von HW1 (more instructed).ipynb

Automatically generated by Colab.

Original file is located at
    https://colab.research.google.com/drive/1dGoZK5ZufqNgHm3hH8FEXe34rFqvwLOY
"""
from __future__ import annotations

"""## Pre-requisite code

The code within this section will be used in the tasks. Please do not change these code lines.

### SciQ loading and counting
"""

from dataclasses import dataclass
import pickle
import os
from typing import Iterable, Callable, List, Dict, Optional, Type, TypeVar
from nlp4web_codebase.ir.data_loaders.dm import Document
from collections import Counter
import tqdm
import re
import nltk
nltk.download("stopwords", quiet=True)
from nltk.corpus import stopwords as nltk_stopwords

LANGUAGE = "english"
word_splitter = re.compile(r"(?u)\b\w\w+\b").findall
stopwords = set(nltk_stopwords.words(LANGUAGE))


def word_splitting(text: str) -> List[str]:
    return word_splitter(text.lower())

def lemmatization(words: List[str]) -> List[str]:
    return words  # We ignore lemmatization here for simplicity

def simple_tokenize(text: str) -> List[str]:
    words = word_splitting(text)
    tokenized = list(filter(lambda w: w not in stopwords, words))
    tokenized = lemmatization(tokenized)
    return tokenized

T = TypeVar("T", bound="InvertedIndex")

@dataclass
class PostingList:
    term: str  # The term
    docid_postings: List[int]  # docid_postings[i] means the docid (int) of the i-th associated posting
    tweight_postings: List[float]  # tweight_postings[i] means the term weight (float) of the i-th associated posting


@dataclass
class InvertedIndex:
    posting_lists: List[PostingList]  # docid -> posting_list
    vocab: Dict[str, int]
    cid2docid: Dict[str, int]  # collection_id -> docid
    collection_ids: List[str]  # docid -> collection_id
    doc_texts: Optional[List[str]] = None  # docid -> document text

    def save(self, output_dir: str) -> None:
        os.makedirs(output_dir, exist_ok=True)
        with open(os.path.join(output_dir, "index.pkl"), "wb") as f:
            pickle.dump(self, f)

    @classmethod
    def from_saved(cls: Type[T], saved_dir: str) -> T:
        index = cls(
            posting_lists=[], vocab={}, cid2docid={}, collection_ids=[], doc_texts=None
        )
        with open(os.path.join(saved_dir, "index.pkl"), "rb") as f:
            index = pickle.load(f)
        return index


# The output of the counting function:
@dataclass
class Counting:
    posting_lists: List[PostingList]
    vocab: Dict[str, int]
    cid2docid: Dict[str, int]
    collection_ids: List[str]
    dfs: List[int]  # tid -> df
    dls: List[int]  # docid -> doc length
    avgdl: float
    nterms: int
    doc_texts: Optional[List[str]] = None

def run_counting(
    documents: Iterable[Document],
    tokenize_fn: Callable[[str], List[str]] = simple_tokenize,
    store_raw: bool = True,  # store the document text in doc_texts
    ndocs: Optional[int] = None,
    show_progress_bar: bool = True,
) -> Counting:
    """Counting TFs, DFs, doc_lengths, etc."""
    posting_lists: List[PostingList] = []
    vocab: Dict[str, int] = {}
    cid2docid: Dict[str, int] = {}
    collection_ids: List[str] = []
    dfs: List[int] = []  # tid -> df
    dls: List[int] = []  # docid -> doc length
    nterms: int = 0
    doc_texts: Optional[List[str]] = []
    for doc in tqdm.tqdm(
        documents,
        desc="Counting",
        total=ndocs,
        disable=not show_progress_bar,
    ):
        if doc.collection_id in cid2docid:
            continue
        collection_ids.append(doc.collection_id)
        docid = cid2docid.setdefault(doc.collection_id, len(cid2docid))
        toks = tokenize_fn(doc.text)
        tok2tf = Counter(toks)
        dls.append(sum(tok2tf.values()))
        for tok, tf in tok2tf.items():
            nterms += tf
            tid = vocab.get(tok, None)
            if tid is None:
                posting_lists.append(
                    PostingList(term=tok, docid_postings=[], tweight_postings=[])
                )
                tid = vocab.setdefault(tok, len(vocab))
            posting_lists[tid].docid_postings.append(docid)
            posting_lists[tid].tweight_postings.append(tf)
            if tid < len(dfs):
                dfs[tid] += 1
            else:
                dfs.append(0)
        if store_raw:
            doc_texts.append(doc.text)
        else:
            doc_texts = None
    return Counting(
        posting_lists=posting_lists,
        vocab=vocab,
        cid2docid=cid2docid,
        collection_ids=collection_ids,
        dfs=dfs,
        dls=dls,
        avgdl=sum(dls) / len(dls),
        nterms=nterms,
        doc_texts=doc_texts,
    )

from nlp4web_codebase.ir.data_loaders.sciq import load_sciq
sciq = load_sciq()
counting = run_counting(documents=iter(sciq.corpus), ndocs=len(sciq.corpus))

"""### BM25 Index"""


from dataclasses import asdict, dataclass
import math
import os
from typing import Iterable, List, Optional, Type
import tqdm
from nlp4web_codebase.ir.data_loaders.dm import Document


@dataclass
class BM25Index(InvertedIndex):

    @staticmethod
    def tokenize(text: str) -> List[str]:
        return simple_tokenize(text)

    @staticmethod
    def cache_term_weights(
        posting_lists: List[PostingList],
        total_docs: int,
        avgdl: float,
        dfs: List[int],
        dls: List[int],
        k1: float,
        b: float,
    ) -> None:
        """Compute term weights and caching"""

        N = total_docs
        for tid, posting_list in enumerate(
            tqdm.tqdm(posting_lists, desc="Regularizing TFs")
        ):
            idf = BM25Index.calc_idf(df=dfs[tid], N=N)
            for i in range(len(posting_list.docid_postings)):
                docid = posting_list.docid_postings[i]
                tf = posting_list.tweight_postings[i]
                dl = dls[docid]
                regularized_tf = BM25Index.calc_regularized_tf(
                    tf=tf, dl=dl, avgdl=avgdl, k1=k1, b=b
                )
                posting_list.tweight_postings[i] = regularized_tf * idf

    @staticmethod
    def calc_regularized_tf(
        tf: int, dl: float, avgdl: float, k1: float, b: float
    ) -> float:
        return tf / (tf + k1 * (1 - b + b * dl / avgdl))

    @staticmethod
    def calc_idf(df: int, N: int):
        return math.log(1 + (N - df + 0.5) / (df + 0.5))

    @classmethod
    def build_from_documents(
        cls: Type[BM25Index],
        documents: Iterable[Document],
        store_raw: bool = True,
        output_dir: Optional[str] = None,
        ndocs: Optional[int] = None,
        show_progress_bar: bool = True,
        k1: float = 0.9,
        b: float = 0.4,
    ) -> BM25Index:
        # Counting TFs, DFs, doc_lengths, etc.:
        counting = run_counting(
            documents=documents,
            tokenize_fn=BM25Index.tokenize,
            store_raw=store_raw,
            ndocs=ndocs,
            show_progress_bar=show_progress_bar,
        )

        # Compute term weights and caching:
        posting_lists = counting.posting_lists
        total_docs = len(counting.cid2docid)
        BM25Index.cache_term_weights(
            posting_lists=posting_lists,
            total_docs=total_docs,
            avgdl=counting.avgdl,
            dfs=counting.dfs,
            dls=counting.dls,
            k1=k1,
            b=b,
        )

        # Assembly and save:
        index = BM25Index(
            posting_lists=posting_lists,
            vocab=counting.vocab,
            cid2docid=counting.cid2docid,
            collection_ids=counting.collection_ids,
            doc_texts=counting.doc_texts,
        )
        return index

bm25_index = BM25Index.build_from_documents(
    documents=iter(sciq.corpus),
    ndocs=12160,
    show_progress_bar=True,
)
bm25_index.save("output/bm25_index")

"""### BM25 Retriever"""

from nlp4web_codebase.ir.models import BaseRetriever
from typing import Type
from abc import abstractmethod


class BaseInvertedIndexRetriever(BaseRetriever):

    @property
    @abstractmethod
    def index_class(self) -> Type[InvertedIndex]:
        pass

    def __init__(self, index_dir: str) -> None:
        self.index = self.index_class.from_saved(index_dir)

    def get_term_weights(self, query: str, cid: str) -> Dict[str, float]:
        toks = self.index.tokenize(query)
        target_docid = self.index.cid2docid[cid]
        term_weights = {}
        for tok in toks:
            if tok not in self.index.vocab:
                continue
            tid = self.index.vocab[tok]
            posting_list = self.index.posting_lists[tid]
            for docid, tweight in zip(
                posting_list.docid_postings, posting_list.tweight_postings
            ):
                if docid == target_docid:
                    term_weights[tok] = tweight
                    break
        return term_weights

    def score(self, query: str, cid: str) -> float:
        return sum(self.get_term_weights(query=query, cid=cid).values())

    def retrieve(self, query: str, topk: int = 10) -> Dict[str, float]:
        toks = self.index.tokenize(query)
        docid2score: Dict[int, float] = {}
        for tok in toks:
            if tok not in self.index.vocab:
                continue
            tid = self.index.vocab[tok]
            posting_list = self.index.posting_lists[tid]
            for docid, tweight in zip(
                posting_list.docid_postings, posting_list.tweight_postings
            ):
                docid2score.setdefault(docid, 0)
                docid2score[docid] += tweight
        docid2score = dict(
            sorted(docid2score.items(), key=lambda pair: pair[1], reverse=True)[:topk]
        )
        return {
            self.index.collection_ids[docid]: score
            for docid, score in docid2score.items()
        }


class BM25Retriever(BaseInvertedIndexRetriever):

    @property
    def index_class(self) -> Type[BM25Index]:
        return BM25Index

bm25_retriever = BM25Retriever(index_dir="output/bm25_index")
bm25_retriever.retrieve("What type of diseases occur when the immune system attacks normal body cells?")

"""# TASK1: tune b and k1 (4 points)

Tune b and k1 on the **dev** split of SciQ using the metric MAP@10. The evaluation function (`evalaute_map`) is provided. Record the values in `plots_k1` and `plots_b`. Do it in a greedy manner: as the influence from b is larger, please first tune b (with k1 fixed to the default value 0.9) and use the best value of b to further tune k1.

$${\displaystyle {\text{score}}(D,Q)=\sum _{i=1}^{n}{\text{IDF}}(q_{i})\cdot {\frac {f(q_{i},D)\cdot (k_{1}+1)}{f(q_{i},D)+k_{1}\cdot \left(1-b+b\cdot {\frac {|D|}{\text{avgdl}}}\right)}}}$$
"""

from nlp4web_codebase.ir.data_loaders import Split
import pytrec_eval


def evaluate_map(rankings: Dict[str, Dict[str, float]], split=Split.dev) -> float:
  metric = "map_cut_10"
  qrels = sciq.get_qrels_dict(split)
  evaluator = pytrec_eval.RelevanceEvaluator(sciq.get_qrels_dict(split), (metric,))
  qps = evaluator.evaluate(rankings)
  return float(np.mean([qp[metric] for qp in qps.values()]))

"""Example of using the pre-requisite code:"""

# Loading dataset:
from nlp4web_codebase.ir.data_loaders.sciq import load_sciq
sciq = load_sciq()
counting = run_counting(documents=iter(sciq.corpus), ndocs=len(sciq.corpus))

# Building BM25 index and save:
bm25_index = BM25Index.build_from_documents(
    documents=iter(sciq.corpus),
    ndocs=12160,
    show_progress_bar=True
)
bm25_index.save("output/bm25_index")

# Loading index and use BM25 retriever to retrieve:
bm25_retriever = BM25Retriever(index_dir="output/bm25_index")
print(bm25_retriever.retrieve("What type of diseases occur when the immune system attacks normal body cells?"))  # the ranking

plots_b: Dict[str, List[float]] = {
    "X": [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0],
    "Y": []
}
plots_k1: Dict[str, List[float]] = {
    "X": [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0],
    "Y": []
}

## YOUR_CODE_STARTS_HERE
# Two steps should be involved:
# Step 1. Fix k1 value to the default one 0.9,
# go through all the candidate b values (0, 0.1, ..., 1.0),
# and record in plots_b["Y"] the corresponding performances obtained via evaluate_map;
# Step 2. Fix b to the best one in step 1. and do the same for k1.

# Hint (on using the pre-requisite code):
# - One can use the loaded sciq dataset directly (loaded in the pre-requisite code);
# - One can build bm25_index with `BM25Index.build_from_documents`;
# - One can use BM25Retriever to load the index and perform retrieval on the dev queries
# (dev queries can be obtained via sciq.get_split_queries(Split.dev))

import numpy as np

for x in plots_b["X"]:
  bm25_index = BM25Index.build_from_documents(
      documents=iter(sciq.corpus),
      ndocs=12160,
      show_progress_bar=True,
      k1=0.9,
      b=x
  )
  bm25_index.save("output/bm25_index")
  bm25_retriever = BM25Retriever(index_dir="output/bm25_index")
  rankings = {}
  for query in sciq.get_split_queries(Split.dev):
    ranking = bm25_retriever.retrieve(query=query.text)
    rankings[query.query_id] = ranking
  result = evaluate_map(rankings, split=Split.dev)
  plots_b["Y"].append(result)

best_b = plots_b["X"][np.argmax(plots_b["Y"])]

for x in plots_k1["X"]:
  bm25_index = BM25Index.build_from_documents(
      documents=iter(sciq.corpus),
      ndocs=12160,
      show_progress_bar=True,
      k1=x,
      b=best_b
  )
  bm25_index.save("output/bm25_index")
  bm25_retriever = BM25Retriever(index_dir="output/bm25_index")
  rankings = {}
  for query in sciq.get_split_queries(Split.dev):
    ranking = bm25_retriever.retrieve(query=query.text)
    rankings[query.query_id] = ranking
  result = evaluate_map(rankings, split=Split.dev)
  plots_k1["Y"].append(result)

"""Let's check the effectiveness gain on test after this tuning on dev"""

default_map = 0.7849
best_b = plots_b["X"][np.argmax(plots_b["Y"])]
best_k1 = plots_k1["X"][np.argmax(plots_k1["Y"])]
bm25_index = BM25Index.build_from_documents(
    documents=iter(sciq.corpus),
    ndocs=12160,
    show_progress_bar=True,
    k1=best_k1,
    b=best_b
)
bm25_index.save("output/bm25_index")
bm25_retriever = BM25Retriever(index_dir="output/bm25_index")
rankings = {}
for query in sciq.get_split_queries(Split.test):  # note this is now on test
  ranking = bm25_retriever.retrieve(query=query.text)
  rankings[query.query_id] = ranking
optimized_map = evaluate_map(rankings, split=Split.test)  # note this is now on test

"""# TASK2: CSC matrix and `CSCBM25Index` (12 points)

Recall that we use Python lists to implement posting lists, mapping term IDs to the documents in which they appear. This is inefficient due to its naive design. Actually [Compressed Sparse Column matrix](https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.html) is very suitable for storing the posting lists and can boost the efficiency.

## TASK2.1: learn about `scipy.sparse.csc_matrix` (2 point)

Convert the matrix \begin{bmatrix}
0 & 1 & 0 & 3 \\
10 & 2 & 1 & 0 \\
0 & 0 & 0 & 9
\end{bmatrix} to a `csc_matrix` by specifying `data`, `indices`, `indptr` and `shape`.
"""

from scipy.sparse._csc import csc_matrix


"""## TASK2.2: implement `CSCBM25Index` (4 points)

Implement `CSCBM25Index` by completing the missing code. Note that `CSCInvertedIndex` is similar to `InvertedIndex` which we talked about during the class. The main difference is posting lists are represented by a CSC sparse matrix.
"""

@dataclass
class CSCInvertedIndex:
    posting_lists_matrix: csc_matrix  # docid -> posting_list
    vocab: Dict[str, int]
    cid2docid: Dict[str, int]  # collection_id -> docid
    collection_ids: List[str]  # docid -> collection_id
    doc_texts: Optional[List[str]] = None  # docid -> document text

    def save(self, output_dir: str) -> None:
        os.makedirs(output_dir, exist_ok=True)
        with open(os.path.join(output_dir, "index.pkl"), "wb") as f:
            pickle.dump(self, f)

    @classmethod
    def from_saved(cls: Type[T], saved_dir: str) -> T:
        index = cls(
            posting_lists_matrix=None, vocab={}, cid2docid={}, collection_ids=[], doc_texts=None
        )
        with open(os.path.join(saved_dir, "index.pkl"), "rb") as f:
            index = pickle.load(f)
        return index

@dataclass
class CSCBM25Index(CSCInvertedIndex):

    @staticmethod
    def tokenize(text: str) -> List[str]:
        return simple_tokenize(text)

    @staticmethod
    def cache_term_weights(
        posting_lists: List[PostingList],
        total_docs: int,
        avgdl: float,
        dfs: List[int],
        dls: List[int],
        k1: float,
        b: float,
    ) -> csc_matrix:
        """Compute term weights and caching"""

        ## YOUR_CODE_STARTS_HERE
        data = []
        indices = []
        indptr = [0]
        count = 0
        N = total_docs
        print(N)
        print(len(posting_lists))
        for tid, posting_list in enumerate(
            tqdm.tqdm(posting_lists, desc="Regularizing TFs")
        ):
            idf = CSCBM25Index.calc_idf(df=dfs[tid], N=N)
            #print(len(posting_list.docid_postings))
            for i in range(len(posting_list.docid_postings)):
                docid = posting_list.docid_postings[i]
                tf = posting_list.tweight_postings[i]
                dl = dls[docid]
                regularized_tf = CSCBM25Index.calc_regularized_tf(
                    tf=tf, dl=dl, avgdl=avgdl, k1=k1, b=b
                )
                # Update the term weight with modified TF * modified IDF:
                data.append(regularized_tf * idf)
                #indices.append(docid)
                indices.append(docid)
                count = count + 1

            indptr.append(count)
        #shape = (len(posting_lists),len(posting_lists[0].docid_postings))
        output_matrix = csc_matrix((data, indices, indptr),dtype=np.float32) #shape=(N, len(posting_lists)))
        #csc_transpose = output_matrix.transpose()
        #print(len(posting_lists))
        print(output_matrix.shape)
        print(count)
        print(output_matrix.size)
        return output_matrix
        ## YOUR_CODE_ENDS_HERE

    @staticmethod
    def calc_regularized_tf(
        tf: int, dl: float, avgdl: float, k1: float, b: float
    ) -> float:
        return tf / (tf + k1 * (1 - b + b * dl / avgdl))

    @staticmethod
    def calc_idf(df: int, N: int):
        return math.log(1 + (N - df + 0.5) / (df + 0.5))

    @classmethod
    def build_from_documents(
        cls: Type[CSCBM25Index],
        documents: Iterable[Document],
        store_raw: bool = True,
        output_dir: Optional[str] = None,
        ndocs: Optional[int] = None,
        show_progress_bar: bool = True,
        k1: float = 0.9,
        b: float = 0.4,
    ) -> CSCBM25Index:
        # Counting TFs, DFs, doc_lengths, etc.:
        counting = run_counting(
            documents=documents,
            tokenize_fn=CSCBM25Index.tokenize,
            store_raw=store_raw,
            ndocs=ndocs,
            show_progress_bar=show_progress_bar,
        )

        # Compute term weights and caching:
        posting_lists = counting.posting_lists
        total_docs = len(counting.cid2docid)
        posting_lists_matrix = CSCBM25Index.cache_term_weights(
            posting_lists=posting_lists,
            total_docs=total_docs,
            avgdl=counting.avgdl,
            dfs=counting.dfs,
            dls=counting.dls,
            k1=k1,
            b=b,
        )

        # Assembly and save:
        index = CSCBM25Index(
            posting_lists_matrix=posting_lists_matrix,
            vocab=counting.vocab,
            cid2docid=counting.cid2docid,
            collection_ids=counting.collection_ids,
            doc_texts=counting.doc_texts,
        )
        return index

csc_bm25_index = CSCBM25Index.build_from_documents(
    documents=iter(sciq.corpus),
    ndocs=12160,
    show_progress_bar=True,
    k1=best_k1,
    b=best_b
)
csc_bm25_index.save("output/csc_bm25_index")


class BaseCSCInvertedIndexRetriever(BaseRetriever):

    @property
    @abstractmethod
    def index_class(self) -> Type[CSCInvertedIndex]:
        pass

    def __init__(self, index_dir: str) -> None:
        self.index = self.index_class.from_saved(index_dir)

    def get_term_weights(self, query: str, cid: str) -> Dict[str, float]:
        ## YOUR_CODE_STARTS_HERE
        toks = self.index.tokenize(query)
        target_docid = self.index.cid2docid[cid]
        term_weights = {}
        matrix = self.index.posting_lists_matrix.astype(np.float64)
        for tok in toks:
            if tok not in self.index.vocab:
                continue
            tid = self.index.vocab[tok]
            if matrix[target_docid, tid]!= 0:
              term_weights[tok] = matrix[target_docid, tid]

        return term_weights
        ## YOUR_CODE_ENDS_HERE

    def score(self, query: str, cid: str) -> float:
        return sum(self.get_term_weights(query=query, cid=cid).values())

    def retrieve(self, query: str, topk: int = 10) -> Dict[str, float]:
        ## YOUR_CODE_STARTS_HERE
        toks = self.index.tokenize(query)
        docid2score: Dict[int, float] = {}
        matrix = self.index.posting_lists_matrix.astype(np.float64)
        for tok in toks:
            if tok not in self.index.vocab:
                continue
            tid = self.index.vocab[tok]

            #posting_list = self.index.posting_lists[tid]
            #for i, docid in enumerate(posting_list.docid_postings):
                #tweight = matrix[docid, i]
                #docid2score.setdefault(docid, 0)
                #docid2score[docid] += tweight

            for docid in range(matrix.shape[0]):
                tweight = matrix[docid, tid]
                docid2score.setdefault(docid, 0)
                docid2score[docid] += tweight

        docid2score = dict(
            sorted(docid2score.items(), key=lambda pair: pair[1], reverse=True)[:topk]
        )
        return {
            self.index.collection_ids[docid]: score
            for docid, score in docid2score.items()
        }



        ## YOUR_CODE_ENDS_HERE


class CSCBM25Retriever(BaseCSCInvertedIndexRetriever):

    @property
    def index_class(self) -> Type[CSCBM25Index]:
        return CSCBM25Index



"""# TASK3: a search-engine demo based on Huggingface space (4 points)

## TASK3.1: create the gradio app (2 point)

Create a gradio app to demo the BM25 search engine index on SciQ. The app should have a single input variable for the query (of type `str`) and a single output variable for the returned ranking (of type `List[Hit]` in the code below). Please use the BM25 system with default k1 and b values.

Hint: it should use a "search" function of signature:

```python
def search(query: str) -> List[Hit]:
  ...
```
"""


import gradio as gr
from typing import TypedDict

class Hit(TypedDict):
  cid: str
  score: float
  text: str

demo: Optional[gr.Interface] = None  # Assign your gradio demo to this variable
return_type = List[Hit]

## YOUR_CODE_STARTS_HERE
bm25_index = BM25Index.build_from_documents(
      documents=iter(sciq.corpus),
      ndocs=12160,
      show_progress_bar=True,
      k1=best_k1,
      b=best_b
  )
bm25_index.save("output/bm25_index")
bm25_retriever = BM25Retriever(index_dir="output/bm25_index")

def search(query: str) -> List[Hit]:
    l = []
    for x,y in bm25_retriever.retrieve(query).items():
        hit_object: Hit = {
    "cid": x,
    "score": y,
    "text": sciq.corpus[bm25_retriever.index.cid2docid[x]]
}
        l.append(hit_object)
    return l
#print(search("What type of organism is commonly used in preparation of foods such as cheese and yogurt?"))
demo = gr.Interface(
    fn=search,
    inputs="text",
    outputs= "text",
)
## YOUR_CODE_ENDS_HERE
demo.launch()