import gradio as gr import torch import torchvision from torch import nn from typing import List def ifnone(a, b): # a fastai-specific (fastcore) function used below, redefined so it's independent "`b` if `a` is None else `a`" return b if a is None else a def convT_norm_relu(ch_in:int, ch_out:int, norm_layer:nn.Module, ks:int=3, stride:int=2, bias:bool=True): return [nn.ConvTranspose2d(ch_in, ch_out, kernel_size=ks, stride=stride, padding=1, output_padding=1, bias=bias), norm_layer(ch_out), nn.ReLU(True)] def pad_conv_norm_relu(ch_in:int, ch_out:int, pad_mode:str, norm_layer:nn.Module, ks:int=3, bias:bool=True, pad=1, stride:int=1, activ:bool=True, init=nn.init.kaiming_normal_, init_gain:int=0.02)->List[nn.Module]: layers = [] if pad_mode == 'reflection': layers.append(nn.ReflectionPad2d(pad)) elif pad_mode == 'border': layers.append(nn.ReplicationPad2d(pad)) p = pad if pad_mode == 'zeros' else 0 conv = nn.Conv2d(ch_in, ch_out, kernel_size=ks, padding=p, stride=stride, bias=bias) if init: if init == nn.init.normal_: init(conv.weight, 0.0, init_gain) else: init(conv.weight) if hasattr(conv, 'bias') and hasattr(conv.bias, 'data'): conv.bias.data.fill_(0.) layers += [conv, norm_layer(ch_out)] if activ: layers.append(nn.ReLU(inplace=True)) return layers class ResnetBlock(nn.Module): "nn.Module for the ResNet Block" def __init__(self, dim:int, pad_mode:str='reflection', norm_layer:nn.Module=None, dropout:float=0., bias:bool=True): super().__init__() assert pad_mode in ['zeros', 'reflection', 'border'], f'padding {pad_mode} not implemented.' norm_layer = ifnone(norm_layer, nn.InstanceNorm2d) layers = pad_conv_norm_relu(dim, dim, pad_mode, norm_layer, bias=bias) if dropout != 0: layers.append(nn.Dropout(dropout)) layers += pad_conv_norm_relu(dim, dim, pad_mode, norm_layer, bias=bias, activ=False) self.conv_block = nn.Sequential(*layers) def forward(self, x): return x + self.conv_block(x) def resnet_generator(ch_in:int, ch_out:int, n_ftrs:int=64, norm_layer:nn.Module=None, dropout:float=0., n_blocks:int=9, pad_mode:str='reflection')->nn.Module: norm_layer = ifnone(norm_layer, nn.InstanceNorm2d) bias = (norm_layer == nn.InstanceNorm2d) layers = pad_conv_norm_relu(ch_in, n_ftrs, 'reflection', norm_layer, pad=3, ks=7, bias=bias) for i in range(2): layers += pad_conv_norm_relu(n_ftrs, n_ftrs *2, 'zeros', norm_layer, stride=2, bias=bias) n_ftrs *= 2 layers += [ResnetBlock(n_ftrs, pad_mode, norm_layer, dropout, bias) for _ in range(n_blocks)] for i in range(2): layers += convT_norm_relu(n_ftrs, n_ftrs//2, norm_layer, bias=bias) n_ftrs //= 2 layers += [nn.ReflectionPad2d(3), nn.Conv2d(n_ftrs, ch_out, kernel_size=7, padding=0), nn.Tanh()] return nn.Sequential(*layers) model = resnet_generator(ch_in=3, ch_out=3, n_ftrs=64, norm_layer=None, dropout=0, n_blocks=9) model.load_state_dict(torch.load('generator.pth',map_location=torch.device('cpu'))) model.eval() totensor = torchvision.transforms.ToTensor() normalize_fn = torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) topilimage = torchvision.transforms.ToPILImage() def predict(input): im = normalize_fn(totensor(input)) print(im.shape) preds = model(im.unsqueeze(0))/2 + 0.5 print(preds.shape) return topilimage(preds.squeeze(0).detach()) gr_interface = gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(256, 256)), outputs="image", title='Horse-to-Zebra CycleGAN') gr_interface.launch(inline=False,share=False)