minhtcai
commited on
Commit
•
17b826e
1
Parent(s):
e7b7459
add interface
Browse files- app.py +19 -2
- llama_2_inference.py +47 -0
app.py
CHANGED
@@ -1,4 +1,21 @@
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
x = st.slider('Select a value')
|
4 |
-
st.write(x, 'squared is', x * x)
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
3 |
+
|
4 |
+
# Set the title of the app
|
5 |
+
st.title('LLaMA2Glenda')
|
6 |
+
|
7 |
+
# Load the model and tokenizer
|
8 |
+
model = AutoModelForCausalLM.from_pretrained("tminh/llama-2-7b-glenda")
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained("TinyPixel/Llama-2-7B-bf16-sharded")
|
10 |
+
|
11 |
+
# Create a text input for the prompt
|
12 |
+
prompt = st.text_input('Enter your prompt:')
|
13 |
+
|
14 |
+
# Create a button to trigger the inference
|
15 |
+
if st.button('Generate Answer'):
|
16 |
+
# Run text generation pipeline
|
17 |
+
pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=200)
|
18 |
+
result = pipe(f"<s>[INST] {prompt} [/INST]")
|
19 |
+
# Display the result
|
20 |
+
st.write(result[0]['generated_text'])
|
21 |
|
|
|
|
llama_2_inference.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""Llama 2 Inference.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1tS9ep-M5slbxKrGP2btamFUhMM00QkKt
|
8 |
+
|
9 |
+
# Fine-tune Llama 2 in Google Colab
|
10 |
+
> 🗣️ Large Language Model Course
|
11 |
+
|
12 |
+
❤️ Created by [@maximelabonne](https://twitter.com/maximelabonne), based on Younes Belkada's [GitHub Gist](https://gist.github.com/younesbelkada/9f7f75c94bdc1981c8ca5cc937d4a4da). Special thanks to Tolga HOŞGÖR for his solution to empty the VRAM.
|
13 |
+
|
14 |
+
This notebook runs on a T4 GPU. (Last update: 24 Aug 2023)
|
15 |
+
"""
|
16 |
+
|
17 |
+
!pip install -q accelerate==0.21.0 peft==0.4.0 bitsandbytes==0.40.2 transformers==4.31.0 trl==0.4.7
|
18 |
+
|
19 |
+
import os
|
20 |
+
import torch
|
21 |
+
from datasets import load_dataset
|
22 |
+
from transformers import (
|
23 |
+
AutoModelForCausalLM,
|
24 |
+
AutoTokenizer,
|
25 |
+
BitsAndBytesConfig,
|
26 |
+
HfArgumentParser,
|
27 |
+
TrainingArguments,
|
28 |
+
pipeline,
|
29 |
+
logging,
|
30 |
+
)
|
31 |
+
from peft import LoraConfig, PeftModel
|
32 |
+
from trl import SFTTrainer
|
33 |
+
|
34 |
+
model = AutoModelForCausalLM.from_pretrained("tminh/llama-2-7b-glenda")
|
35 |
+
|
36 |
+
model_name = "TinyPixel/Llama-2-7B-bf16-sharded"
|
37 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
38 |
+
|
39 |
+
# Ignore warnings
|
40 |
+
logging.set_verbosity(logging.CRITICAL)
|
41 |
+
|
42 |
+
# Run text generation pipeline with our next model
|
43 |
+
prompt = "What can drug D07OAC do?"
|
44 |
+
pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=200)
|
45 |
+
result = pipe(f"<s>[INST] {prompt} [/INST]")
|
46 |
+
print(result[0]['generated_text'])
|
47 |
+
|