Spaces:
Running
Running
File size: 6,774 Bytes
8b57e03 80c18a2 8b57e03 55ae524 8b57e03 55ae524 8b57e03 55ae524 8b57e03 55ae524 8b57e03 55ae524 8b57e03 55ae524 8b57e03 55ae524 8b57e03 55ae524 8b57e03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
from __future__ import absolute_import
import streamlit as st
import torch
import os
import sys
import pickle
import torch
import json
import random
import logging
import argparse
import numpy as np
from io import open
from itertools import cycle
import torch.nn as nn
from model import Seq2Seq
from tqdm import tqdm, trange
import regex as re
from torch.utils.data import (
DataLoader,
Dataset,
SequentialSampler,
RandomSampler,
TensorDataset,
)
from torch.utils.data.distributed import DistributedSampler
from transformers import (
WEIGHTS_NAME,
AdamW,
get_linear_schedule_with_warmup,
RobertaConfig,
RobertaModel,
RobertaTokenizer,
)
from huggingface_hub import hf_hub_download
import io
# def list_files(startpath, prev_level=0):
# # list files recursively
# for root, dirs, files in os.walk(startpath):
# level = root.replace(startpath, "").count(os.sep) + prev_level
# indent = " " * 4 * (level)
# print("{}{}/".format(indent, os.path.basename(root)))
# # st.write("{}{}/".format(indent, os.path.basename(root)))
# subindent = " " * 4 * (level + 1)
# for f in files:
# print("{}{}".format(subindent, f))
# # st.write("{}{}".format(subindent, f))
# for d in dirs:
# list_files(d, level + 1)
class CONFIG:
max_source_length = 256
max_target_length = 128
beam_size = 3
local_rank = -1
no_cuda = False
do_train = True
do_eval = True
do_test = True
train_batch_size = 12
eval_batch_size = 32
model_type = "roberta"
model_name_or_path = "microsoft/codebert-base"
output_dir = "/content/drive/MyDrive/CodeSummarization"
load_model_path = None
train_filename = "dataset/python/train.jsonl"
dev_filename = "dataset/python/valid.jsonl"
test_filename = "dataset/python/test.jsonl"
config_name = ""
tokenizer_name = ""
cache_dir = "cache"
save_every = 5000
gradient_accumulation_steps = 1
learning_rate = 5e-5
weight_decay = 1e-4
adam_epsilon = 1e-8
max_grad_norm = 1.0
num_train_epochs = 3.0
max_steps = -1
warmup_steps = 0
train_steps = 100000
eval_steps = 10000
n_gpu = torch.cuda.device_count()
# download model with streamlit cache decorator
@st.cache_resource
def download_model():
if not os.path.exists(r"models/pytorch_model.bin"):
os.makedirs("./models", exist_ok=True)
path = hf_hub_download(
repo_id="tmnam20/codebert-code-summarization",
filename="pytorch_model.bin",
cache_dir="cache",
local_dir=os.path.join(os.getcwd(), "models"),
local_dir_use_symlinks=False,
force_download=True,
)
# load with streamlit cache decorator
# @st.cache(persist=False, show_spinner=True, allow_output_mutation=True)
@st.cache_resource
def load_tokenizer_and_model(pretrained_path):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Config model
config_class, model_class, tokenizer_class = (
RobertaConfig,
RobertaModel,
RobertaTokenizer,
)
model_config = config_class.from_pretrained(
CONFIG.config_name if CONFIG.config_name else CONFIG.model_name_or_path,
cache_dir=CONFIG.cache_dir,
)
# model_config.save_pretrained("config")
# load tokenizer
tokenizer = tokenizer_class.from_pretrained(
CONFIG.tokenizer_name if CONFIG.tokenizer_name else CONFIG.model_name_or_path,
cache_dir=CONFIG.cache_dir,
# do_lower_case=args.do_lower_case
)
# load encoder from pretrained RoBERTa
encoder = model_class.from_pretrained(
CONFIG.model_name_or_path, config=model_config, cache_dir=CONFIG.cache_dir
)
# build decoder
decoder_layer = nn.TransformerDecoderLayer(
d_model=model_config.hidden_size, nhead=model_config.num_attention_heads
)
decoder = nn.TransformerDecoder(decoder_layer, num_layers=6)
# build seq2seq model from pretrained encoder and from-scratch decoder
model = Seq2Seq(
encoder=encoder,
decoder=decoder,
config=model_config,
beam_size=CONFIG.beam_size,
max_length=CONFIG.max_target_length,
sos_id=tokenizer.cls_token_id,
eos_id=tokenizer.sep_token_id,
)
try:
state_dict = torch.load(
os.path.join(os.getcwd(), "models", "pytorch_model.bin"),
map_location=device,
)
except RuntimeError as e:
print(e)
try:
state_dict = torch.load(
os.path.join(os.getcwd(), "models", "pytorch_model.bin"),
map_location="cpu",
)
except RuntimeError as e:
print(e)
state_dict = torch.load(
os.path.join(os.getcwd(), "models", "pytorch_model_cpu.bin"),
map_location="cpu",
)
del state_dict["encoder.embeddings.position_ids"]
model.load_state_dict(state_dict)
# model = model.to("cpu")
# torch.save(model.state_dict(), os.path.join(os.getcwd(), "models", "pytorch_model_cpu.bin"))
model = model.to(device)
return tokenizer, model, device
@st.cache_data
def preprocessing(code_segment):
# remove newlines
code_segment = re.sub(r"\n", " ", code_segment)
# remove docstring
code_segment = re.sub(r'""".*?"""', "", code_segment, flags=re.DOTALL)
# remove multiple spaces
code_segment = re.sub(r"\s+", " ", code_segment)
# remove comments
code_segment = re.sub(r"#.*", "", code_segment)
# remove html tags
code_segment = re.sub(r"<.*?>", "", code_segment)
# remove urls
code_segment = re.sub(r"http\S+", "", code_segment)
# split special chars into different tokens
code_segment = re.sub(r"([^\w\s])", r" \1 ", code_segment)
return code_segment.split()
def generate_docstring(model, tokenizer, device, code_segemnt, max_length=None):
input_tokens = preprocessing(code_segemnt)
encoded_input = tokenizer.encode_plus(
input_tokens,
max_length=CONFIG.max_source_length,
pad_to_max_length=True,
truncation=True,
return_tensors="pt",
)
input_ids = encoded_input["input_ids"].to(device)
input_mask = encoded_input["attention_mask"].to(device)
if max_length is not None:
model.max_length = max_length
summary = model(input_ids, input_mask)
# decode summary with tokenizer
summaries = []
for i in range(summary.shape[1]):
summaries.append(tokenizer.decode(summary[0][i], skip_special_tokens=True))
return summaries
# return tokenizer.decode(summary[0][0], skip_special_tokens=True)
|