File size: 13,248 Bytes
f10aa93
 
7795384
f10aa93
 
 
 
 
e706c90
f10aa93
 
 
 
 
 
 
e706c90
f10aa93
 
 
 
 
 
 
 
 
 
 
7795384
f10aa93
 
08a4f6c
 
 
 
ca03794
f10aa93
e706c90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7795384
e706c90
 
7795384
f10aa93
 
 
7795384
 
f10aa93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e706c90
f10aa93
 
 
e706c90
f10aa93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f093679
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f10aa93
 
 
 
 
 
 
 
 
 
 
f093679
7795384
f093679
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7795384
 
 
f093679
 
7795384
 
 
 
f10aa93
 
 
 
 
 
 
 
 
 
 
 
 
 
e706c90
 
 
 
 
f10aa93
e706c90
f10aa93
 
 
262f480
f10aa93
 
 
 
f093679
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f10aa93
 
f093679
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7795384
 
 
 
f093679
 
7795384
 
 
 
 
f10aa93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f093679
f10aa93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
import os
import sys
import time

# insert current directory to sys.path
sys.path.insert(0, os.path.abspath(os.path.dirname(__file__)))

import re
import sqlite3
import numpy as np
import pandas as pd
import streamlit as st
import requests

from googletrans import Translator
from langdetect import detect
from sql_formatter.core import format_sql

translator = Translator()

st.set_page_config(
    layout="wide",
    page_title="Text To SQL",
    page_icon="📊",
)

# TEXT_2_SQL_API = "http://83.219.197.235:40172/api/text2sql/ask"
TEXT_2_SQL_API = os.environ.get(
    "TEXT_2_SQL_API", "http://213.181.122.2:40057/api/text2sql/ask"
)

try:
    os.remove("resources/ai_app.db")
except:
    pass


@st.cache_resource
def load_database():
    db_conn = sqlite3.connect("resources/ai_app.db")
    with open("resources/schema.sql", "r") as f:
        db_conn.executescript(f.read())

    return db_conn


db_conn = load_database()


def execute_sql(sql_query):
    try:
        cursor = db_conn.cursor()
        cursor.execute(sql_query)
        st.success("SQL query executed successfully!")
        return cursor.fetchall()
    except Exception as e:
        st.info("Database is not supported")
        return None


# @st.cache_data
def ask_text2sql(question, context):
    if detect(question) != "en":
        question = translate_question(question)
        # st.write("The question is translated to Vietnamese:")
        # st.code(question, language="en")

    r = requests.post(
        TEXT_2_SQL_API,
        json={
            "context": context,
            "question": question,
        },
    )
    return r.json()["answers"][0]


@st.cache_data
def translate_question(question):
    return translator.translate(question, dest="en").text


@st.cache_data
def load_example_df():
    example_df = pd.read_csv("resources/examples.csv")
    return example_df


def introduction():
    st.title("📊 Introduction")
    st.write("👋 Welcome to the Text to SQL app!")
    st.write(
        "🔍 This app allows you to explore the ability of Text to SQL model. The model is CodeLlama-13b finetuned using QLoRA on NSText2SQL dataset."
    )
    st.write(
        "📈 The NSText2SQL dataset contains more than 290.000 training samples. Then, the model is evaluated on Spider and vMLP datasets."
    )
    st.write("📑 The other pages in this app include:")
    st.write(
        "  - 📊 EDA Page: This page includes several visualizations to help you understand the two dataset: Spider and vMLP."
    )
    st.write(
        "  - 💰 Text2SQL Page: This page allows you to generate SQL query from a given question and context."
    )
    st.write(
        "  - 🧑‍💻 About Page: This page provides information about the app and its creators."
    )
    st.write(
        "  - 📚 Reference Page: This page lists the references used in building this app."
    )


# Define a function for the EDA page
def eda():
    st.title("📊 Dataset Exploration")

    # st.subheader("Candlestick Chart")
    # fig = go.Figure(
    #     data=[
    #         go.Candlestick(
    #             x=df["date"],
    #             open=df["open"],
    #             high=df["high"],
    #             low=df["low"],
    #             close=df["close"],
    #             increasing_line_color="green",
    #             decreasing_line_color="red",
    #         )
    #     ],
    #     layout=go.Layout(
    #         title="Tesla Stock Price",
    #         xaxis_title="Date",
    #         yaxis_title="Price (USD)",
    #         xaxis_rangeslider_visible=True,
    #     ),
    # )
    # st.plotly_chart(fig)

    # st.subheader("Line Chart")
    # # Plot the closing price over time
    # plot_column = st.selectbox(
    #     "Select a column", ["open", "close", "low", "high"], index=0
    # )
    # fig = px.line(
    #     df, x="date", y=plot_column, title=f"Tesla {plot_column} Price Over Time"
    # )
    # st.plotly_chart(fig)

    # st.subheader("Distribution of Closing Price")
    # # Plot the distribution of the closing price
    # closing_price_hist = px.histogram(
    #     df, x="close", nbins=30, title="Distribution of Tesla Closing Price"
    # )
    # st.plotly_chart(closing_price_hist)

    # st.subheader("Raw Data")
    # st.write("You can see the raw data below.")
    # # Display the dataset
    # st.dataframe(df)


def preprocess_context(context):
    context = context.replace("\n", " ").replace("\t", " ").replace("\r", " ")

    # Remove multiple spaces
    context = re.sub(" +", " ", context)

    return context


def examples():
    st.title("Examples")
    st.write(
        "This page uses CodeLlama-13b finetuned using QLoRA on NSText2SQL dataset to generate SQL query from a given question and context.\nThe examples are listed below"
    )

    example_df = load_example_df()
    example_tabs = st.tabs([f"Example {i+1}" for i in range(len(example_df))])
    example_btns = []

    with st.sidebar:
        # create a blank space
        st.write("")
        st.write("")
        st.write("")
        execute_sql_query = st.checkbox(
            "Execute SQL query",
        )
        num_tries = st.number_input(
            "Number of tries",
            value=3,
            min_value=1,
            max_value=10,
            step=1,
        )

    for idx, row in example_df.iterrows():
        with example_tabs[idx]:
            st.markdown("##### Context:")
            st.code(row["context"], language="sql")
            st.markdown("##### Question:")
            st.text(row["question"])

            example_btns.append(st.button("Generate SQL query", key=f"exp-btn-{idx}"))

            if example_btns[idx]:
                st.markdown("##### SQL query:")
                tries = num_tries
                with st.spinner("Generating SQL query..."):
                    if execute_sql_query:
                        while tries > 0:
                            start_time = time.time()
                            query = ask_text2sql(row["question"], row["context"])
                            end_time = time.time()
                            st.write(
                                "The SQL query generated by the model in **{:.2f}s** is:".format(
                                    end_time - start_time
                                )
                            )
                            st.code(format_sql(query), language="sql")
                            result = execute_sql(query)

                            st.write(
                                "Executing the SQL query yields the following result:"
                            )
                            st.dataframe(pd.DataFrame(result), hide_index=True)
                            if result is not None:
                                break
                            else:
                                tries -= 1
                    else:
                        start_time = time.time()
                        query = ask_text2sql(row["question"], row["context"])
                        end_time = time.time()
                        st.markdown(
                            "The SQL query generated by the model in **{:.2f}s** is:".format(
                                end_time - start_time
                            )
                        )
                        st.code(format_sql(query), language="sql")


# Define a function for the Stock Prediction page
def interactive_demo():
    st.title("Text to SQL using CodeLlama-13b")
    st.write(
        "This page uses CodeLlama-13b finetuned using QLoRA on NSText2SQL dataset to generate SQL query from a given question and context."
    )

    st.subheader("Input")
    context_placeholder = st.empty()
    question_placeholder = st.empty()
    context = context_placeholder.text_area(
        "##### Context",
        """CREATE TABLE customer (id number, name text, gender text, age number, district_id number;
CREATE TABLE registration (customer_id number, product_id number); 
CREATE TABLE district (id number, name text, prefix text, province_id number); 
CREATE TABLE province (id number, name text, code text)
CREATE TABLE product (id number, category text, name text, description text, price number, duration number, data_amount number, voice_amount number, sms_amount number);""",
        key="context",
        height=150,
    )
    question = question_placeholder.text_input(
        "##### Question",
        "Số lượng khách hàng có độ tuổi từ 30 đến 45 tuổi?",
        key="question",
    )
    get_sql_button = st.button("Generate SQL query")

    with st.sidebar:
        # create a blank space
        st.write("")
        st.write("")
        st.write("")
        execute_sql_query = st.checkbox(
            "Execute SQL query",
        )
        num_tries = st.number_input(
            "Number of tries",
            value=3,
            min_value=1,
            max_value=10,
            step=1,
        )

    if get_sql_button:
        st.markdown("##### Output")
        tries = num_tries
        if execute_sql_query:
            while tries > 0:
                start_time = time.time()
                query = ask_text2sql(question, context)
                end_time = time.time()

                st.write(
                    "The SQL query generated by the model in **{:.2f}s** is:".format(
                        end_time - start_time
                    )
                )
                # Display the SQL query in a code block
                st.code(format_sql(query), language="sql")
                result = execute_sql(query)
                st.write("Executing the SQL query yields the following result:")
                st.dataframe(pd.DataFrame(result), hide_index=True)
                if result is not None:
                    break
                else:
                    tries -= 1
        else:
            start_time = time.time()
            query = ask_text2sql(question, context)
            end_time = time.time()

            st.markdown(
                "The SQL query generated by the model in **{:.2f}s** is:".format(
                    end_time - start_time
                )
            )
            # Display the SQL query in a code block
            st.code(format_sql(query), language="sql")


# Define a function for the About page
def about():
    st.title("🧑‍💻 About")
    st.write(
        "This Streamlit app allows you to explore stock prices and make predictions using an LSTM model."
    )

    st.header("Author")
    st.write(
        "This app was developed by Minh Nam. You can contact the author at trminhnam20082002@gmail.com."
    )

    st.header("Data Sources")
    st.markdown(
        "The Spider dataset was sourced from [Spider](https://yale-lily.github.io/spider)."
    )
    st.markdown("The vMLP dataset is a private dataset from Viettel.")

    st.header("Acknowledgments")
    st.write(
        "The author would like to thank Dr. Nguyen Van Nam for his proper guidance, Mr. Nguyen Chi Dong for his support."
    )

    st.header("License")
    st.write(
        # "This app is licensed under the MIT License. See LICENSE.txt for more information."
        "N/A"
    )


def references():
    st.title("📚 References")
    st.header(
        "References for Text to SQL project using foundation model - CodeLlama-13b"
    )

    st.subheader("1. 'Project for time-series data' by AI VIET NAM, et al.")
    st.write(
        "This organization provides a tutorial on how to build a stock price prediction model using LSTM in the AIO2022 course."
    )
    st.write("Link: https://www.facebook.com/aivietnam.edu.vn")

    st.subheader(
        "2. 'PyTorch LSTMs for time series forecasting of Indian Stocks' by Vinayak Nayak"
    )
    st.write(
        "This blog post describes how to build a stock price prediction model using LSTM, RNN and CNN-sliding window model."
    )
    st.write(
        "Link: https://medium.com/analytics-vidhya/pytorch-lstms-for-time-series-forecasting-of-indian-stocks-8a49157da8b9#b052"
    )

    st.header("References for Streamlit")

    st.subheader("1. Streamlit Documentation")
    st.write(
        "The official documentation for Streamlit provides detailed information about how to use the library and build Streamlit apps."
    )
    st.write("Link: https://docs.streamlit.io/")

    st.subheader("2. Streamlit Community")
    st.write(
        "The Streamlit community includes a forum and a GitHub repository with examples and resources for building Streamlit apps."
    )
    st.write(
        "Link: https://discuss.streamlit.io/ and https://github.com/streamlit/streamlit/"
    )


# Create the sidebar
st.sidebar.title("Menu")
pages = [
    "Introduction",
    # "Datasets",
    "Examples",
    "Interactive Demo",
    "About",
    "References",
]
selected_page = st.sidebar.radio("Go to", pages)

# Show the appropriate page based on the selection
if selected_page == "Introduction":
    introduction()
elif selected_page == "EDA":
    eda()
elif selected_page == "Examples":
    examples()
elif selected_page == "Interactive Demo":
    interactive_demo()
elif selected_page == "About":
    about()
elif selected_page == "References":
    references()