#!/usr/bin/env python import os import random import uuid import gradio as gr import numpy as np from PIL import Image import spaces import torch from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler DESCRIPTION = """ # DALL•E 3 XL v2 Test from ehristoforu code """ def save_image(img): unique_name = str(uuid.uuid4()) + ".png" img.save(unique_name) return unique_name def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed MAX_SEED = np.iinfo(np.int32).max if not torch.cuda.is_available(): DESCRIPTION += "\n
Running on CPU 🥶 This demo may not work on CPU.
" MAX_SEED = np.iinfo(np.int32).max USE_TORCH_COMPILE = 0 ENABLE_CPU_OFFLOAD = 0 if torch.cuda.is_available(): pipe = StableDiffusionXLPipeline.from_pretrained( "fluently/Fluently-XL-v2", torch_dtype=torch.float16, use_safetensors=True, ) pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.load_lora_weights("ehristoforu/dalle-3-xl-v2", weight_name="dalle-3-xl-lora-v2.safetensors", adapter_name="dalle") pipe.set_adapters("dalle") pipe.to("cuda") @spaces.GPU(enable_queue=True) def generate( prompt: str, negative_prompt: str = "", use_negative_prompt: bool = False, seed: int = 0, width: int = 1024, height: int = 1024, guidance_scale: float = 3, randomize_seed: bool = False, progress=gr.Progress(track_tqdm=True), ): seed = int(randomize_seed_fn(seed, randomize_seed)) if not use_negative_prompt: negative_prompt = "" # type: ignore images = pipe( prompt=prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=25, num_images_per_prompt=1, cross_attention_kwargs={"scale": 0.65}, output_type="pil", ).images image_paths = [save_image(img) for img in images] print(image_paths) return image_paths, seed examples = [ "neon holography crystal horse", "a mouse eating a piece of cheese", "an astronaut riding a rocket in space", "a cartoon of a girl playing with a ball", "a cute robot artist painting on a nature, concept art", "a close up of a lady wearing a transparent, prismatic, elaborate nemeses headdress, over the should pose, brown skin-tone" ] css = ''' .gradio-container{max-width: 560px !important} h1{text-align:center} footer { visibility: hidden } ''' with gr.Blocks(css=css, theme="pseudolab/huggingface-korea-theme") as demo: gr.Markdown(DESCRIPTION) gr.DuplicateButton( value="Duplicate Space for private use", elem_id="duplicate-button", visible=False, ) with gr.Group(): with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Gallery(label="Result", columns=1, preview=True, show_label=False) with gr.Accordion("Advanced options", open=False): use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True) negative_prompt = gr.Text( label="Negative prompt", lines=4, max_lines=6, value="""(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, (NSFW:1.25)""", placeholder="Enter a negative prompt", visible=True, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, visible=True ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(visible=True): width = gr.Slider( label="Width", minimum=512, maximum=2048, step=8, value=1024, ) height = gr.Slider( label="Height", minimum=512, maximum=2048, step=8, value=1024, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance Scale", minimum=0.1, maximum=20.0, step=0.1, value=6, ) gr.Examples( examples=examples, inputs=prompt, outputs=[result, seed], fn=generate, cache_examples=False, ) use_negative_prompt.change( fn=lambda x: gr.update(visible=x), inputs=use_negative_prompt, outputs=negative_prompt, api_name=False, ) gr.on( triggers=[ prompt.submit, negative_prompt.submit, run_button.click, ], fn=generate, inputs=[ prompt, negative_prompt, use_negative_prompt, seed, width, height, guidance_scale, randomize_seed, ], outputs=[result, seed], api_name="run", ) if __name__ == "__main__": demo.queue(max_size=20).launch(show_api=False, debug=False)