to-be commited on
Commit
f6bce53
·
1 Parent(s): c8c471f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -1
app.py CHANGED
@@ -78,7 +78,7 @@ paragraph1 = '<p>Basic idea of this 🍩 model is to give it an image as input a
78
  paragraph2 = '<p><strong>Training</strong>:<br />The model was trained with a few thousand of annotated invoices and non-invoices (for those the doctype will be &#39;Other&#39;). They span across different countries and languages. They are always one page only. The dataset is proprietary unfortunately.&nbsp;Model is set to input resolution of 1280x1920 pixels. So any sample you want to try with higher dpi than 150 has no added value.<br />It was trained for about 4 hours on a&nbsp;NVIDIA RTX A4000 for 20k steps with a val_metric of&nbsp;0.03413819904382196 at the end.<br />The <u>following indexes</u> were included in the train set:</p><ul><li><span style="font-family:Calibri"><span style="color:black">DocType</span></span></li><li><span style="font-family:Calibri"><span style="color:black">Currency</span></span></li><li><span style="font-family:Calibri"><span style="color:black">DocumentDate</span></span></li><li><span style="font-family:Calibri"><span style="color:black">GrossAmount</span></span></li><li><span style="font-family:Calibri"><span style="color:black">InvoiceNumber</span></span></li><li><span style="font-family:Calibri"><span style="color:black">NetAmount</span></span></li><li><span style="font-family:Calibri"><span style="color:black">TaxAmount</span></span></li><li><span style="font-family:Calibri"><span style="color:black">OrderNumber</span></span></li><li><span style="font-family:Calibri"><span style="color:black">CreditorCountry</span></span></li></ul>'
79
  #demo = gr.Interface(fn=process_document,inputs=gr_image,outputs="json",title="Demo: Donut 🍩 for invoice header retrieval", description=description,
80
  # article=article,enable_queue=True, examples=[["example.jpg"], ["example_2.jpg"], ["example_3.jpg"]], cache_examples=False)
81
- paragraph3 = '<p><strong>Try it out:</strong><br />To use it, simply upload your image and click &#39;submit&#39;, or click one of the examples to load them.<br /><em>(because this is running on the free cpu tier, it will take about 40 secs before you see a result)</em></p><p>&nbsp;</p><p>Have fun&nbsp;😎</p><p>Toon Beerten</p>'
82
 
83
  css = "#inp {height: auto !important; width: 100% !important;}"
84
  # css = "@media screen and (max-width: 600px) { .output_image, .input_image {height:20rem !important; width: 100% !important;} }"
 
78
  paragraph2 = '<p><strong>Training</strong>:<br />The model was trained with a few thousand of annotated invoices and non-invoices (for those the doctype will be &#39;Other&#39;). They span across different countries and languages. They are always one page only. The dataset is proprietary unfortunately.&nbsp;Model is set to input resolution of 1280x1920 pixels. So any sample you want to try with higher dpi than 150 has no added value.<br />It was trained for about 4 hours on a&nbsp;NVIDIA RTX A4000 for 20k steps with a val_metric of&nbsp;0.03413819904382196 at the end.<br />The <u>following indexes</u> were included in the train set:</p><ul><li><span style="font-family:Calibri"><span style="color:black">DocType</span></span></li><li><span style="font-family:Calibri"><span style="color:black">Currency</span></span></li><li><span style="font-family:Calibri"><span style="color:black">DocumentDate</span></span></li><li><span style="font-family:Calibri"><span style="color:black">GrossAmount</span></span></li><li><span style="font-family:Calibri"><span style="color:black">InvoiceNumber</span></span></li><li><span style="font-family:Calibri"><span style="color:black">NetAmount</span></span></li><li><span style="font-family:Calibri"><span style="color:black">TaxAmount</span></span></li><li><span style="font-family:Calibri"><span style="color:black">OrderNumber</span></span></li><li><span style="font-family:Calibri"><span style="color:black">CreditorCountry</span></span></li></ul>'
79
  #demo = gr.Interface(fn=process_document,inputs=gr_image,outputs="json",title="Demo: Donut 🍩 for invoice header retrieval", description=description,
80
  # article=article,enable_queue=True, examples=[["example.jpg"], ["example_2.jpg"], ["example_3.jpg"]], cache_examples=False)
81
+ paragraph3 = '<p><strong>Try it out:</strong><br />To use it, simply upload your image and click &#39;submit&#39;, or click one of the examples to load them.<br /><em>(because this is running on the free cpu tier, it will take about 40 secs before you see a result. On a GPU it takes less than 2 seconds)</em></p><p>&nbsp;</p><p>Have fun&nbsp;😎</p><p>Toon Beerten</p>'
82
 
83
  css = "#inp {height: auto !important; width: 100% !important;}"
84
  # css = "@media screen and (max-width: 600px) { .output_image, .input_image {height:20rem !important; width: 100% !important;} }"