File size: 10,680 Bytes
ad16788 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
#!/usr/bin/env python3
# Copyright 2018 Nagoya University (Tomoki Hayashi)
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
"""Text-to-speech model training script."""
import logging
import os
import random
import subprocess
import sys
import configargparse
import numpy as np
from espnet import __version__
from espnet.nets.tts_interface import TTSInterface
from espnet.utils.cli_utils import strtobool
from espnet.utils.training.batchfy import BATCH_COUNT_CHOICES
# NOTE: you need this func to generate our sphinx doc
def get_parser():
"""Get parser of training arguments."""
parser = configargparse.ArgumentParser(
description="Train a new text-to-speech (TTS) model on one CPU, "
"one or multiple GPUs",
config_file_parser_class=configargparse.YAMLConfigFileParser,
formatter_class=configargparse.ArgumentDefaultsHelpFormatter,
)
# general configuration
parser.add("--config", is_config_file=True, help="config file path")
parser.add(
"--config2",
is_config_file=True,
help="second config file path that overwrites the settings in `--config`.",
)
parser.add(
"--config3",
is_config_file=True,
help="third config file path that overwrites "
"the settings in `--config` and `--config2`.",
)
parser.add_argument(
"--ngpu",
default=None,
type=int,
help="Number of GPUs. If not given, use all visible devices",
)
parser.add_argument(
"--backend",
default="pytorch",
type=str,
choices=["chainer", "pytorch"],
help="Backend library",
)
parser.add_argument("--outdir", type=str, required=True, help="Output directory")
parser.add_argument("--debugmode", default=1, type=int, help="Debugmode")
parser.add_argument("--seed", default=1, type=int, help="Random seed")
parser.add_argument(
"--resume",
"-r",
default="",
type=str,
nargs="?",
help="Resume the training from snapshot",
)
parser.add_argument(
"--minibatches",
"-N",
type=int,
default="-1",
help="Process only N minibatches (for debug)",
)
parser.add_argument("--verbose", "-V", default=0, type=int, help="Verbose option")
parser.add_argument(
"--tensorboard-dir",
default=None,
type=str,
nargs="?",
help="Tensorboard log directory path",
)
parser.add_argument(
"--eval-interval-epochs", default=1, type=int, help="Evaluation interval epochs"
)
parser.add_argument(
"--save-interval-epochs", default=1, type=int, help="Save interval epochs"
)
parser.add_argument(
"--report-interval-iters",
default=100,
type=int,
help="Report interval iterations",
)
# task related
parser.add_argument(
"--train-json", type=str, required=True, help="Filename of training json"
)
parser.add_argument(
"--valid-json", type=str, required=True, help="Filename of validation json"
)
# network architecture
parser.add_argument(
"--model-module",
type=str,
default="espnet.nets.pytorch_backend.e2e_tts_tacotron2:Tacotron2",
help="model defined module",
)
# minibatch related
parser.add_argument(
"--sortagrad",
default=0,
type=int,
nargs="?",
help="How many epochs to use sortagrad for. 0 = deactivated, -1 = all epochs",
)
parser.add_argument(
"--batch-sort-key",
default="shuffle",
type=str,
choices=["shuffle", "output", "input"],
nargs="?",
help='Batch sorting key. "shuffle" only work with --batch-count "seq".',
)
parser.add_argument(
"--batch-count",
default="auto",
choices=BATCH_COUNT_CHOICES,
help="How to count batch_size. "
"The default (auto) will find how to count by args.",
)
parser.add_argument(
"--batch-size",
"--batch-seqs",
"-b",
default=0,
type=int,
help="Maximum seqs in a minibatch (0 to disable)",
)
parser.add_argument(
"--batch-bins",
default=0,
type=int,
help="Maximum bins in a minibatch (0 to disable)",
)
parser.add_argument(
"--batch-frames-in",
default=0,
type=int,
help="Maximum input frames in a minibatch (0 to disable)",
)
parser.add_argument(
"--batch-frames-out",
default=0,
type=int,
help="Maximum output frames in a minibatch (0 to disable)",
)
parser.add_argument(
"--batch-frames-inout",
default=0,
type=int,
help="Maximum input+output frames in a minibatch (0 to disable)",
)
parser.add_argument(
"--maxlen-in",
"--batch-seq-maxlen-in",
default=100,
type=int,
metavar="ML",
help="When --batch-count=seq, "
"batch size is reduced if the input sequence length > ML.",
)
parser.add_argument(
"--maxlen-out",
"--batch-seq-maxlen-out",
default=200,
type=int,
metavar="ML",
help="When --batch-count=seq, "
"batch size is reduced if the output sequence length > ML",
)
parser.add_argument(
"--num-iter-processes",
default=0,
type=int,
help="Number of processes of iterator",
)
parser.add_argument(
"--preprocess-conf",
type=str,
default=None,
help="The configuration file for the pre-processing",
)
parser.add_argument(
"--use-speaker-embedding",
default=False,
type=strtobool,
help="Whether to use speaker embedding",
)
parser.add_argument(
"--use-second-target",
default=False,
type=strtobool,
help="Whether to use second target",
)
# optimization related
parser.add_argument(
"--opt", default="adam", type=str, choices=["adam", "noam"], help="Optimizer"
)
parser.add_argument(
"--accum-grad", default=1, type=int, help="Number of gradient accumuration"
)
parser.add_argument(
"--lr", default=1e-3, type=float, help="Learning rate for optimizer"
)
parser.add_argument("--eps", default=1e-6, type=float, help="Epsilon for optimizer")
parser.add_argument(
"--weight-decay",
default=1e-6,
type=float,
help="Weight decay coefficient for optimizer",
)
parser.add_argument(
"--epochs", "-e", default=30, type=int, help="Number of maximum epochs"
)
parser.add_argument(
"--early-stop-criterion",
default="validation/main/loss",
type=str,
nargs="?",
help="Value to monitor to trigger an early stopping of the training",
)
parser.add_argument(
"--patience",
default=3,
type=int,
nargs="?",
help="Number of epochs to wait "
"without improvement before stopping the training",
)
parser.add_argument(
"--grad-clip", default=1, type=float, help="Gradient norm threshold to clip"
)
parser.add_argument(
"--num-save-attention",
default=5,
type=int,
help="Number of samples of attention to be saved",
)
parser.add_argument(
"--keep-all-data-on-mem",
default=False,
type=strtobool,
help="Whether to keep all data on memory",
)
# finetuning related
parser.add_argument(
"--enc-init",
default=None,
type=str,
help="Pre-trained TTS model path to initialize encoder.",
)
parser.add_argument(
"--enc-init-mods",
default="enc.",
type=lambda s: [str(mod) for mod in s.split(",") if s != ""],
help="List of encoder modules to initialize, separated by a comma.",
)
parser.add_argument(
"--dec-init",
default=None,
type=str,
help="Pre-trained TTS model path to initialize decoder.",
)
parser.add_argument(
"--dec-init-mods",
default="dec.",
type=lambda s: [str(mod) for mod in s.split(",") if s != ""],
help="List of decoder modules to initialize, separated by a comma.",
)
parser.add_argument(
"--freeze-mods",
default=None,
type=lambda s: [str(mod) for mod in s.split(",") if s != ""],
help="List of modules to freeze (not to train), separated by a comma.",
)
return parser
def main(cmd_args):
"""Run training."""
parser = get_parser()
args, _ = parser.parse_known_args(cmd_args)
from espnet.utils.dynamic_import import dynamic_import
model_class = dynamic_import(args.model_module)
assert issubclass(model_class, TTSInterface)
model_class.add_arguments(parser)
args = parser.parse_args(cmd_args)
# add version info in args
args.version = __version__
# logging info
if args.verbose > 0:
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
else:
logging.basicConfig(
level=logging.WARN,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
logging.warning("Skip DEBUG/INFO messages")
# If --ngpu is not given,
# 1. if CUDA_VISIBLE_DEVICES is set, all visible devices
# 2. if nvidia-smi exists, use all devices
# 3. else ngpu=0
if args.ngpu is None:
cvd = os.environ.get("CUDA_VISIBLE_DEVICES")
if cvd is not None:
ngpu = len(cvd.split(","))
else:
logging.warning("CUDA_VISIBLE_DEVICES is not set.")
try:
p = subprocess.run(
["nvidia-smi", "-L"], stdout=subprocess.PIPE, stderr=subprocess.PIPE
)
except (subprocess.CalledProcessError, FileNotFoundError):
ngpu = 0
else:
ngpu = len(p.stderr.decode().split("\n")) - 1
args.ngpu = ngpu
else:
ngpu = args.ngpu
logging.info(f"ngpu: {ngpu}")
# set random seed
logging.info("random seed = %d" % args.seed)
random.seed(args.seed)
np.random.seed(args.seed)
if args.backend == "pytorch":
from espnet.tts.pytorch_backend.tts import train
train(args)
else:
raise NotImplementedError("Only pytorch is supported.")
if __name__ == "__main__":
main(sys.argv[1:])
|