File size: 10,680 Bytes
ad16788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
#!/usr/bin/env python3

# Copyright 2018 Nagoya University (Tomoki Hayashi)
#  Apache 2.0  (http://www.apache.org/licenses/LICENSE-2.0)

"""Text-to-speech model training script."""

import logging
import os
import random
import subprocess
import sys

import configargparse
import numpy as np

from espnet import __version__
from espnet.nets.tts_interface import TTSInterface
from espnet.utils.cli_utils import strtobool
from espnet.utils.training.batchfy import BATCH_COUNT_CHOICES


# NOTE: you need this func to generate our sphinx doc
def get_parser():
    """Get parser of training arguments."""
    parser = configargparse.ArgumentParser(
        description="Train a new text-to-speech (TTS) model on one CPU, "
        "one or multiple GPUs",
        config_file_parser_class=configargparse.YAMLConfigFileParser,
        formatter_class=configargparse.ArgumentDefaultsHelpFormatter,
    )

    # general configuration
    parser.add("--config", is_config_file=True, help="config file path")
    parser.add(
        "--config2",
        is_config_file=True,
        help="second config file path that overwrites the settings in `--config`.",
    )
    parser.add(
        "--config3",
        is_config_file=True,
        help="third config file path that overwrites "
        "the settings in `--config` and `--config2`.",
    )

    parser.add_argument(
        "--ngpu",
        default=None,
        type=int,
        help="Number of GPUs. If not given, use all visible devices",
    )
    parser.add_argument(
        "--backend",
        default="pytorch",
        type=str,
        choices=["chainer", "pytorch"],
        help="Backend library",
    )
    parser.add_argument("--outdir", type=str, required=True, help="Output directory")
    parser.add_argument("--debugmode", default=1, type=int, help="Debugmode")
    parser.add_argument("--seed", default=1, type=int, help="Random seed")
    parser.add_argument(
        "--resume",
        "-r",
        default="",
        type=str,
        nargs="?",
        help="Resume the training from snapshot",
    )
    parser.add_argument(
        "--minibatches",
        "-N",
        type=int,
        default="-1",
        help="Process only N minibatches (for debug)",
    )
    parser.add_argument("--verbose", "-V", default=0, type=int, help="Verbose option")
    parser.add_argument(
        "--tensorboard-dir",
        default=None,
        type=str,
        nargs="?",
        help="Tensorboard log directory path",
    )
    parser.add_argument(
        "--eval-interval-epochs", default=1, type=int, help="Evaluation interval epochs"
    )
    parser.add_argument(
        "--save-interval-epochs", default=1, type=int, help="Save interval epochs"
    )
    parser.add_argument(
        "--report-interval-iters",
        default=100,
        type=int,
        help="Report interval iterations",
    )
    # task related
    parser.add_argument(
        "--train-json", type=str, required=True, help="Filename of training json"
    )
    parser.add_argument(
        "--valid-json", type=str, required=True, help="Filename of validation json"
    )
    # network architecture
    parser.add_argument(
        "--model-module",
        type=str,
        default="espnet.nets.pytorch_backend.e2e_tts_tacotron2:Tacotron2",
        help="model defined module",
    )
    # minibatch related
    parser.add_argument(
        "--sortagrad",
        default=0,
        type=int,
        nargs="?",
        help="How many epochs to use sortagrad for. 0 = deactivated, -1 = all epochs",
    )
    parser.add_argument(
        "--batch-sort-key",
        default="shuffle",
        type=str,
        choices=["shuffle", "output", "input"],
        nargs="?",
        help='Batch sorting key. "shuffle" only work with --batch-count "seq".',
    )
    parser.add_argument(
        "--batch-count",
        default="auto",
        choices=BATCH_COUNT_CHOICES,
        help="How to count batch_size. "
        "The default (auto) will find how to count by args.",
    )
    parser.add_argument(
        "--batch-size",
        "--batch-seqs",
        "-b",
        default=0,
        type=int,
        help="Maximum seqs in a minibatch (0 to disable)",
    )
    parser.add_argument(
        "--batch-bins",
        default=0,
        type=int,
        help="Maximum bins in a minibatch (0 to disable)",
    )
    parser.add_argument(
        "--batch-frames-in",
        default=0,
        type=int,
        help="Maximum input frames in a minibatch (0 to disable)",
    )
    parser.add_argument(
        "--batch-frames-out",
        default=0,
        type=int,
        help="Maximum output frames in a minibatch (0 to disable)",
    )
    parser.add_argument(
        "--batch-frames-inout",
        default=0,
        type=int,
        help="Maximum input+output frames in a minibatch (0 to disable)",
    )
    parser.add_argument(
        "--maxlen-in",
        "--batch-seq-maxlen-in",
        default=100,
        type=int,
        metavar="ML",
        help="When --batch-count=seq, "
        "batch size is reduced if the input sequence length > ML.",
    )
    parser.add_argument(
        "--maxlen-out",
        "--batch-seq-maxlen-out",
        default=200,
        type=int,
        metavar="ML",
        help="When --batch-count=seq, "
        "batch size is reduced if the output sequence length > ML",
    )
    parser.add_argument(
        "--num-iter-processes",
        default=0,
        type=int,
        help="Number of processes of iterator",
    )
    parser.add_argument(
        "--preprocess-conf",
        type=str,
        default=None,
        help="The configuration file for the pre-processing",
    )
    parser.add_argument(
        "--use-speaker-embedding",
        default=False,
        type=strtobool,
        help="Whether to use speaker embedding",
    )
    parser.add_argument(
        "--use-second-target",
        default=False,
        type=strtobool,
        help="Whether to use second target",
    )
    # optimization related
    parser.add_argument(
        "--opt", default="adam", type=str, choices=["adam", "noam"], help="Optimizer"
    )
    parser.add_argument(
        "--accum-grad", default=1, type=int, help="Number of gradient accumuration"
    )
    parser.add_argument(
        "--lr", default=1e-3, type=float, help="Learning rate for optimizer"
    )
    parser.add_argument("--eps", default=1e-6, type=float, help="Epsilon for optimizer")
    parser.add_argument(
        "--weight-decay",
        default=1e-6,
        type=float,
        help="Weight decay coefficient for optimizer",
    )
    parser.add_argument(
        "--epochs", "-e", default=30, type=int, help="Number of maximum epochs"
    )
    parser.add_argument(
        "--early-stop-criterion",
        default="validation/main/loss",
        type=str,
        nargs="?",
        help="Value to monitor to trigger an early stopping of the training",
    )
    parser.add_argument(
        "--patience",
        default=3,
        type=int,
        nargs="?",
        help="Number of epochs to wait "
        "without improvement before stopping the training",
    )
    parser.add_argument(
        "--grad-clip", default=1, type=float, help="Gradient norm threshold to clip"
    )
    parser.add_argument(
        "--num-save-attention",
        default=5,
        type=int,
        help="Number of samples of attention to be saved",
    )
    parser.add_argument(
        "--keep-all-data-on-mem",
        default=False,
        type=strtobool,
        help="Whether to keep all data on memory",
    )
    # finetuning related
    parser.add_argument(
        "--enc-init",
        default=None,
        type=str,
        help="Pre-trained TTS model path to initialize encoder.",
    )
    parser.add_argument(
        "--enc-init-mods",
        default="enc.",
        type=lambda s: [str(mod) for mod in s.split(",") if s != ""],
        help="List of encoder modules to initialize, separated by a comma.",
    )
    parser.add_argument(
        "--dec-init",
        default=None,
        type=str,
        help="Pre-trained TTS model path to initialize decoder.",
    )
    parser.add_argument(
        "--dec-init-mods",
        default="dec.",
        type=lambda s: [str(mod) for mod in s.split(",") if s != ""],
        help="List of decoder modules to initialize, separated by a comma.",
    )
    parser.add_argument(
        "--freeze-mods",
        default=None,
        type=lambda s: [str(mod) for mod in s.split(",") if s != ""],
        help="List of modules to freeze (not to train), separated by a comma.",
    )

    return parser


def main(cmd_args):
    """Run training."""
    parser = get_parser()
    args, _ = parser.parse_known_args(cmd_args)

    from espnet.utils.dynamic_import import dynamic_import

    model_class = dynamic_import(args.model_module)
    assert issubclass(model_class, TTSInterface)
    model_class.add_arguments(parser)
    args = parser.parse_args(cmd_args)

    # add version info in args
    args.version = __version__

    # logging info
    if args.verbose > 0:
        logging.basicConfig(
            level=logging.INFO,
            format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
        )
    else:
        logging.basicConfig(
            level=logging.WARN,
            format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
        )
        logging.warning("Skip DEBUG/INFO messages")

    # If --ngpu is not given,
    #   1. if CUDA_VISIBLE_DEVICES is set, all visible devices
    #   2. if nvidia-smi exists, use all devices
    #   3. else ngpu=0
    if args.ngpu is None:
        cvd = os.environ.get("CUDA_VISIBLE_DEVICES")
        if cvd is not None:
            ngpu = len(cvd.split(","))
        else:
            logging.warning("CUDA_VISIBLE_DEVICES is not set.")
            try:
                p = subprocess.run(
                    ["nvidia-smi", "-L"], stdout=subprocess.PIPE, stderr=subprocess.PIPE
                )
            except (subprocess.CalledProcessError, FileNotFoundError):
                ngpu = 0
            else:
                ngpu = len(p.stderr.decode().split("\n")) - 1
        args.ngpu = ngpu
    else:
        ngpu = args.ngpu
    logging.info(f"ngpu: {ngpu}")

    # set random seed
    logging.info("random seed = %d" % args.seed)
    random.seed(args.seed)
    np.random.seed(args.seed)

    if args.backend == "pytorch":
        from espnet.tts.pytorch_backend.tts import train

        train(args)
    else:
        raise NotImplementedError("Only pytorch is supported.")


if __name__ == "__main__":
    main(sys.argv[1:])