File size: 7,628 Bytes
ad16788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
# The implementation of DPRNN in
# Luo. et al. "Dual-path rnn: efficient long sequence modeling
# for time-domain single-channel speech separation."
#
# The code is based on:
# https://github.com/yluo42/TAC/blob/master/utility/models.py
#


import torch
from torch.autograd import Variable
import torch.nn as nn


EPS = torch.finfo(torch.get_default_dtype()).eps


class SingleRNN(nn.Module):
    """Container module for a single RNN layer.

    args:
        rnn_type: string, select from 'RNN', 'LSTM' and 'GRU'.
        input_size: int, dimension of the input feature. The input should have shape
                    (batch, seq_len, input_size).
        hidden_size: int, dimension of the hidden state.
        dropout: float, dropout ratio. Default is 0.
        bidirectional: bool, whether the RNN layers are bidirectional. Default is False.
    """

    def __init__(
        self, rnn_type, input_size, hidden_size, dropout=0, bidirectional=False
    ):
        super().__init__()

        rnn_type = rnn_type.upper()

        assert rnn_type in [
            "RNN",
            "LSTM",
            "GRU",
        ], f"Only support 'RNN', 'LSTM' and 'GRU', current type: {rnn_type}"

        self.rnn_type = rnn_type
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.num_direction = int(bidirectional) + 1

        self.rnn = getattr(nn, rnn_type)(
            input_size,
            hidden_size,
            1,
            batch_first=True,
            bidirectional=bidirectional,
        )

        self.dropout = nn.Dropout(p=dropout)

        # linear projection layer
        self.proj = nn.Linear(hidden_size * self.num_direction, input_size)

    def forward(self, input):
        # input shape: batch, seq, dim
        # input = input.to(device)
        output = input
        rnn_output, _ = self.rnn(output)
        rnn_output = self.dropout(rnn_output)
        rnn_output = self.proj(
            rnn_output.contiguous().view(-1, rnn_output.shape[2])
        ).view(output.shape)
        return rnn_output


# dual-path RNN
class DPRNN(nn.Module):
    """Deep dual-path RNN.

    args:
        rnn_type: string, select from 'RNN', 'LSTM' and 'GRU'.
        input_size: int, dimension of the input feature. The input should have shape
                    (batch, seq_len, input_size).
        hidden_size: int, dimension of the hidden state.
        output_size: int, dimension of the output size.
        dropout: float, dropout ratio. Default is 0.
        num_layers: int, number of stacked RNN layers. Default is 1.
        bidirectional: bool, whether the RNN layers are bidirectional. Default is True.
    """

    def __init__(
        self,
        rnn_type,
        input_size,
        hidden_size,
        output_size,
        dropout=0,
        num_layers=1,
        bidirectional=True,
    ):
        super().__init__()

        self.input_size = input_size
        self.output_size = output_size
        self.hidden_size = hidden_size

        # dual-path RNN
        self.row_rnn = nn.ModuleList([])
        self.col_rnn = nn.ModuleList([])
        self.row_norm = nn.ModuleList([])
        self.col_norm = nn.ModuleList([])
        for i in range(num_layers):
            self.row_rnn.append(
                SingleRNN(
                    rnn_type, input_size, hidden_size, dropout, bidirectional=True
                )
            )  # intra-segment RNN is always noncausal
            self.col_rnn.append(
                SingleRNN(
                    rnn_type,
                    input_size,
                    hidden_size,
                    dropout,
                    bidirectional=bidirectional,
                )
            )
            self.row_norm.append(nn.GroupNorm(1, input_size, eps=1e-8))
            # default is to use noncausal LayerNorm for inter-chunk RNN.
            # For causal setting change it to causal normalization accordingly.
            self.col_norm.append(nn.GroupNorm(1, input_size, eps=1e-8))

        # output layer
        self.output = nn.Sequential(nn.PReLU(), nn.Conv2d(input_size, output_size, 1))

    def forward(self, input):
        # input shape: batch, N, dim1, dim2
        # apply RNN on dim1 first and then dim2
        # output shape: B, output_size, dim1, dim2
        # input = input.to(device)
        batch_size, _, dim1, dim2 = input.shape
        output = input
        for i in range(len(self.row_rnn)):
            row_input = (
                output.permute(0, 3, 2, 1)
                .contiguous()
                .view(batch_size * dim2, dim1, -1)
            )  # B*dim2, dim1, N
            row_output = self.row_rnn[i](row_input)  # B*dim2, dim1, H
            row_output = (
                row_output.view(batch_size, dim2, dim1, -1)
                .permute(0, 3, 2, 1)
                .contiguous()
            )  # B, N, dim1, dim2
            row_output = self.row_norm[i](row_output)
            output = output + row_output

            col_input = (
                output.permute(0, 2, 3, 1)
                .contiguous()
                .view(batch_size * dim1, dim2, -1)
            )  # B*dim1, dim2, N
            col_output = self.col_rnn[i](col_input)  # B*dim1, dim2, H
            col_output = (
                col_output.view(batch_size, dim1, dim2, -1)
                .permute(0, 3, 1, 2)
                .contiguous()
            )  # B, N, dim1, dim2
            col_output = self.col_norm[i](col_output)
            output = output + col_output

        output = self.output(output)  # B, output_size, dim1, dim2

        return output


def _pad_segment(input, segment_size):
    # input is the features: (B, N, T)
    batch_size, dim, seq_len = input.shape
    segment_stride = segment_size // 2

    rest = segment_size - (segment_stride + seq_len % segment_size) % segment_size
    if rest > 0:
        pad = Variable(torch.zeros(batch_size, dim, rest)).type(input.type())
        input = torch.cat([input, pad], 2)

    pad_aux = Variable(torch.zeros(batch_size, dim, segment_stride)).type(input.type())
    input = torch.cat([pad_aux, input, pad_aux], 2)

    return input, rest


def split_feature(input, segment_size):
    # split the feature into chunks of segment size
    # input is the features: (B, N, T)

    input, rest = _pad_segment(input, segment_size)
    batch_size, dim, seq_len = input.shape
    segment_stride = segment_size // 2

    segments1 = (
        input[:, :, :-segment_stride]
        .contiguous()
        .view(batch_size, dim, -1, segment_size)
    )
    segments2 = (
        input[:, :, segment_stride:]
        .contiguous()
        .view(batch_size, dim, -1, segment_size)
    )
    segments = (
        torch.cat([segments1, segments2], 3)
        .view(batch_size, dim, -1, segment_size)
        .transpose(2, 3)
    )

    return segments.contiguous(), rest


def merge_feature(input, rest):
    # merge the splitted features into full utterance
    # input is the features: (B, N, L, K)

    batch_size, dim, segment_size, _ = input.shape
    segment_stride = segment_size // 2
    input = (
        input.transpose(2, 3).contiguous().view(batch_size, dim, -1, segment_size * 2)
    )  # B, N, K, L

    input1 = (
        input[:, :, :, :segment_size]
        .contiguous()
        .view(batch_size, dim, -1)[:, :, segment_stride:]
    )
    input2 = (
        input[:, :, :, segment_size:]
        .contiguous()
        .view(batch_size, dim, -1)[:, :, :-segment_stride]
    )

    output = input1 + input2
    if rest > 0:
        output = output[:, :, :-rest]

    return output.contiguous()  # B, N, T