File size: 3,230 Bytes
ad16788 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
from collections import OrderedDict
from typing import List
from typing import Tuple
from typing import Union
import torch
from torch_complex.tensor import ComplexTensor
from espnet2.enh.layers.tcn import TemporalConvNet
from espnet2.enh.separator.abs_separator import AbsSeparator
class TCNSeparator(AbsSeparator):
def __init__(
self,
input_dim: int,
num_spk: int = 2,
layer: int = 8,
stack: int = 3,
bottleneck_dim: int = 128,
hidden_dim: int = 512,
kernel: int = 3,
causal: bool = False,
norm_type: str = "gLN",
nonlinear: str = "relu",
):
"""Temporal Convolution Separator
Args:
input_dim: input feature dimension
num_spk: number of speakers
layer: int, number of layers in each stack.
stack: int, number of stacks
bottleneck_dim: bottleneck dimension
hidden_dim: number of convolution channel
kernel: int, kernel size.
causal: bool, defalut False.
norm_type: str, choose from 'BN', 'gLN', 'cLN'
nonlinear: the nonlinear function for mask estimation,
select from 'relu', 'tanh', 'sigmoid'
"""
super().__init__()
self._num_spk = num_spk
if nonlinear not in ("sigmoid", "relu", "tanh"):
raise ValueError("Not supporting nonlinear={}".format(nonlinear))
self.tcn = TemporalConvNet(
N=input_dim,
B=bottleneck_dim,
H=hidden_dim,
P=kernel,
X=layer,
R=stack,
C=num_spk,
norm_type=norm_type,
causal=causal,
mask_nonlinear=nonlinear,
)
def forward(
self, input: Union[torch.Tensor, ComplexTensor], ilens: torch.Tensor
) -> Tuple[List[Union[torch.Tensor, ComplexTensor]], torch.Tensor, OrderedDict]:
"""Forward.
Args:
input (torch.Tensor or ComplexTensor): Encoded feature [B, T, N]
ilens (torch.Tensor): input lengths [Batch]
Returns:
masked (List[Union(torch.Tensor, ComplexTensor)]): [(B, T, N), ...]
ilens (torch.Tensor): (B,)
others predicted data, e.g. masks: OrderedDict[
'mask_spk1': torch.Tensor(Batch, Frames, Freq),
'mask_spk2': torch.Tensor(Batch, Frames, Freq),
...
'mask_spkn': torch.Tensor(Batch, Frames, Freq),
]
"""
# if complex spectrum
if isinstance(input, ComplexTensor):
feature = abs(input)
else:
feature = input
B, L, N = feature.shape
feature = feature.transpose(1, 2) # B, N, L
masks = self.tcn(feature) # B, num_spk, N, L
masks = masks.transpose(2, 3) # B, num_spk, L, N
masks = masks.unbind(dim=1) # List[B, L, N]
masked = [input * m for m in masks]
others = OrderedDict(
zip(["mask_spk{}".format(i + 1) for i in range(len(masks))], masks)
)
return masked, ilens, others
@property
def num_spk(self):
return self._num_spk
|