File size: 19,466 Bytes
ad16788 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 |
from collections import defaultdict
from contextlib import contextmanager
import dataclasses
import datetime
from distutils.version import LooseVersion
import logging
from pathlib import Path
import time
from typing import ContextManager
from typing import Dict
from typing import List
from typing import Optional
from typing import Sequence
from typing import Tuple
from typing import Union
import warnings
import humanfriendly
import numpy as np
import torch
from typeguard import check_argument_types
from typeguard import check_return_type
import wandb
if LooseVersion(torch.__version__) >= LooseVersion("1.1.0"):
from torch.utils.tensorboard import SummaryWriter
else:
from tensorboardX import SummaryWriter
Num = Union[float, int, complex, torch.Tensor, np.ndarray]
_reserved = {"time", "total_count"}
def to_reported_value(v: Num, weight: Num = None) -> "ReportedValue":
assert check_argument_types()
if isinstance(v, (torch.Tensor, np.ndarray)):
if np.prod(v.shape) != 1:
raise ValueError(f"v must be 0 or 1 dimension: {len(v.shape)}")
v = v.item()
if isinstance(weight, (torch.Tensor, np.ndarray)):
if np.prod(weight.shape) != 1:
raise ValueError(f"weight must be 0 or 1 dimension: {len(weight.shape)}")
weight = weight.item()
if weight is not None:
retval = WeightedAverage(v, weight)
else:
retval = Average(v)
assert check_return_type(retval)
return retval
def aggregate(values: Sequence["ReportedValue"]) -> Num:
assert check_argument_types()
for v in values:
if not isinstance(v, type(values[0])):
raise ValueError(
f"Can't use different Reported type together: "
f"{type(v)} != {type(values[0])}"
)
if len(values) == 0:
warnings.warn("No stats found")
retval = np.nan
elif isinstance(values[0], Average):
retval = np.nanmean([v.value for v in values])
elif isinstance(values[0], WeightedAverage):
# Excludes non finite values
invalid_indices = set()
for i, v in enumerate(values):
if not np.isfinite(v.value) or not np.isfinite(v.weight):
invalid_indices.add(i)
values = [v for i, v in enumerate(values) if i not in invalid_indices]
if len(values) != 0:
# Calc weighed average. Weights are changed to sum-to-1.
sum_weights = sum(v.weight for i, v in enumerate(values))
sum_value = sum(v.value * v.weight for i, v in enumerate(values))
if sum_weights == 0:
warnings.warn("weight is zero")
retval = np.nan
else:
retval = sum_value / sum_weights
else:
warnings.warn("No valid stats found")
retval = np.nan
else:
raise NotImplementedError(f"type={type(values[0])}")
assert check_return_type(retval)
return retval
class ReportedValue:
pass
@dataclasses.dataclass(frozen=True)
class Average(ReportedValue):
value: Num
@dataclasses.dataclass(frozen=True)
class WeightedAverage(ReportedValue):
value: Tuple[Num, Num]
weight: Num
class SubReporter:
"""This class is used in Reporter.
See the docstring of Reporter for the usage.
"""
def __init__(self, key: str, epoch: int, total_count: int):
assert check_argument_types()
self.key = key
self.epoch = epoch
self.start_time = time.perf_counter()
self.stats = defaultdict(list)
self._finished = False
self.total_count = total_count
self.count = 0
self._seen_keys_in_the_step = set()
def get_total_count(self) -> int:
"""Returns the number of iterations over all epochs."""
return self.total_count
def get_epoch(self) -> int:
return self.epoch
def next(self):
"""Close up this step and reset state for the next step"""
for key, stats_list in self.stats.items():
if key not in self._seen_keys_in_the_step:
# Fill nan value if the key is not registered in this step
if isinstance(stats_list[0], WeightedAverage):
stats_list.append(to_reported_value(np.nan, 0))
elif isinstance(stats_list[0], Average):
stats_list.append(to_reported_value(np.nan))
else:
raise NotImplementedError(f"type={type(stats_list[0])}")
assert len(stats_list) == self.count, (len(stats_list), self.count)
self._seen_keys_in_the_step = set()
def register(
self,
stats: Dict[str, Optional[Union[Num, Dict[str, Num]]]],
weight: Num = None,
) -> None:
assert check_argument_types()
if self._finished:
raise RuntimeError("Already finished")
if len(self._seen_keys_in_the_step) == 0:
# Increment count as the first register in this step
self.total_count += 1
self.count += 1
for key2, v in stats.items():
if key2 in _reserved:
raise RuntimeError(f"{key2} is reserved.")
if key2 in self._seen_keys_in_the_step:
raise RuntimeError(f"{key2} is registered twice.")
if v is None:
v = np.nan
r = to_reported_value(v, weight)
if key2 not in self.stats:
# If it's the first time to register the key,
# append nan values in front of the the value
# to make it same length to the other stats
# e.g.
# stat A: [0.4, 0.3, 0.5]
# stat B: [nan, nan, 0.2]
nan = to_reported_value(np.nan, None if weight is None else 0)
self.stats[key2].extend(
r if i == self.count - 1 else nan for i in range(self.count)
)
else:
self.stats[key2].append(r)
self._seen_keys_in_the_step.add(key2)
def log_message(self, start: int = None, end: int = None) -> str:
if self._finished:
raise RuntimeError("Already finished")
if start is None:
start = 0
if start < 0:
start = self.count + start
if end is None:
end = self.count
if self.count == 0 or start == end:
return ""
message = f"{self.epoch}epoch:{self.key}:" f"{start + 1}-{end}batch: "
for idx, (key2, stats_list) in enumerate(self.stats.items()):
assert len(stats_list) == self.count, (len(stats_list), self.count)
# values: List[ReportValue]
values = stats_list[start:end]
if idx != 0 and idx != len(stats_list):
message += ", "
v = aggregate(values)
if abs(v) > 1.0e3:
message += f"{key2}={v:.3e}"
elif abs(v) > 1.0e-3:
message += f"{key2}={v:.3f}"
else:
message += f"{key2}={v:.3e}"
return message
def tensorboard_add_scalar(self, summary_writer: SummaryWriter, start: int = None):
if start is None:
start = 0
if start < 0:
start = self.count + start
for key2, stats_list in self.stats.items():
assert len(stats_list) == self.count, (len(stats_list), self.count)
# values: List[ReportValue]
values = stats_list[start:]
v = aggregate(values)
summary_writer.add_scalar(key2, v, self.total_count)
def wandb_log(self, start: int = None, commit: bool = True):
if start is None:
start = 0
if start < 0:
start = self.count + start
d = {}
for key2, stats_list in self.stats.items():
assert len(stats_list) == self.count, (len(stats_list), self.count)
# values: List[ReportValue]
values = stats_list[start:]
v = aggregate(values)
d[key2] = v
d["iteration"] = self.total_count
wandb.log(d, commit=commit)
def finished(self) -> None:
self._finished = True
@contextmanager
def measure_time(self, name: str):
start = time.perf_counter()
yield start
t = time.perf_counter() - start
self.register({name: t})
def measure_iter_time(self, iterable, name: str):
iterator = iter(iterable)
while True:
try:
start = time.perf_counter()
retval = next(iterator)
t = time.perf_counter() - start
self.register({name: t})
yield retval
except StopIteration:
break
class Reporter:
"""Reporter class.
Examples:
>>> reporter = Reporter()
>>> with reporter.observe('train') as sub_reporter:
... for batch in iterator:
... stats = dict(loss=0.2)
... sub_reporter.register(stats)
"""
def __init__(self, epoch: int = 0):
assert check_argument_types()
if epoch < 0:
raise ValueError(f"epoch must be 0 or more: {epoch}")
self.epoch = epoch
# stats: Dict[int, Dict[str, Dict[str, float]]]
# e.g. self.stats[epoch]['train']['loss']
self.stats = {}
def get_epoch(self) -> int:
return self.epoch
def set_epoch(self, epoch: int) -> None:
if epoch < 0:
raise ValueError(f"epoch must be 0 or more: {epoch}")
self.epoch = epoch
@contextmanager
def observe(self, key: str, epoch: int = None) -> ContextManager[SubReporter]:
sub_reporter = self.start_epoch(key, epoch)
yield sub_reporter
# Receive the stats from sub_reporter
self.finish_epoch(sub_reporter)
def start_epoch(self, key: str, epoch: int = None) -> SubReporter:
if epoch is not None:
if epoch < 0:
raise ValueError(f"epoch must be 0 or more: {epoch}")
self.epoch = epoch
if self.epoch - 1 not in self.stats or key not in self.stats[self.epoch - 1]:
# If the previous epoch doesn't exist for some reason,
# maybe due to bug, this case also indicates 0-count.
if self.epoch - 1 != 0:
warnings.warn(
f"The stats of the previous epoch={self.epoch - 1}"
f"doesn't exist."
)
total_count = 0
else:
total_count = self.stats[self.epoch - 1][key]["total_count"]
sub_reporter = SubReporter(key, self.epoch, total_count)
# Clear the stats for the next epoch if it exists
self.stats.pop(epoch, None)
return sub_reporter
def finish_epoch(self, sub_reporter: SubReporter) -> None:
if self.epoch != sub_reporter.epoch:
raise RuntimeError(
f"Don't change epoch during observation: "
f"{self.epoch} != {sub_reporter.epoch}"
)
# Calc mean of current stats and set it as previous epochs stats
stats = {}
for key2, values in sub_reporter.stats.items():
v = aggregate(values)
stats[key2] = v
stats["time"] = datetime.timedelta(
seconds=time.perf_counter() - sub_reporter.start_time
)
stats["total_count"] = sub_reporter.total_count
if LooseVersion(torch.__version__) >= LooseVersion("1.4.0"):
if torch.cuda.is_initialized():
stats["gpu_max_cached_mem_GB"] = (
torch.cuda.max_memory_reserved() / 2 ** 30
)
else:
if torch.cuda.is_available() and torch.cuda.max_memory_cached() > 0:
stats["gpu_cached_mem_GB"] = torch.cuda.max_memory_cached() / 2 ** 30
self.stats.setdefault(self.epoch, {})[sub_reporter.key] = stats
sub_reporter.finished()
def sort_epochs_and_values(
self, key: str, key2: str, mode: str
) -> List[Tuple[int, float]]:
"""Return the epoch which resulted the best value.
Example:
>>> val = reporter.sort_epochs_and_values('eval', 'loss', 'min')
>>> e_1best, v_1best = val[0]
>>> e_2best, v_2best = val[1]
"""
if mode not in ("min", "max"):
raise ValueError(f"mode must min or max: {mode}")
if not self.has(key, key2):
raise KeyError(f"{key}.{key2} is not found: {self.get_all_keys()}")
# iterate from the last epoch
values = [(e, self.stats[e][key][key2]) for e in self.stats]
if mode == "min":
values = sorted(values, key=lambda x: x[1])
else:
values = sorted(values, key=lambda x: -x[1])
return values
def sort_epochs(self, key: str, key2: str, mode: str) -> List[int]:
return [e for e, v in self.sort_epochs_and_values(key, key2, mode)]
def sort_values(self, key: str, key2: str, mode: str) -> List[float]:
return [v for e, v in self.sort_epochs_and_values(key, key2, mode)]
def get_best_epoch(self, key: str, key2: str, mode: str, nbest: int = 0) -> int:
return self.sort_epochs(key, key2, mode)[nbest]
def check_early_stopping(
self,
patience: int,
key1: str,
key2: str,
mode: str,
epoch: int = None,
logger=None,
) -> bool:
if logger is None:
logger = logging
if epoch is None:
epoch = self.get_epoch()
best_epoch = self.get_best_epoch(key1, key2, mode)
if epoch - best_epoch > patience:
logger.info(
f"[Early stopping] {key1}.{key2} has not been "
f"improved {epoch - best_epoch} epochs continuously. "
f"The training was stopped at {epoch}epoch"
)
return True
else:
return False
def has(self, key: str, key2: str, epoch: int = None) -> bool:
if epoch is None:
epoch = self.get_epoch()
return (
epoch in self.stats
and key in self.stats[epoch]
and key2 in self.stats[epoch][key]
)
def log_message(self, epoch: int = None) -> str:
if epoch is None:
epoch = self.get_epoch()
message = ""
for key, d in self.stats[epoch].items():
_message = ""
for key2, v in d.items():
if v is not None:
if len(_message) != 0:
_message += ", "
if isinstance(v, float):
if abs(v) > 1.0e3:
_message += f"{key2}={v:.3e}"
elif abs(v) > 1.0e-3:
_message += f"{key2}={v:.3f}"
else:
_message += f"{key2}={v:.3e}"
elif isinstance(v, datetime.timedelta):
_v = humanfriendly.format_timespan(v)
_message += f"{key2}={_v}"
else:
_message += f"{key2}={v}"
if len(_message) != 0:
if len(message) == 0:
message += f"{epoch}epoch results: "
else:
message += ", "
message += f"[{key}] {_message}"
return message
def get_value(self, key: str, key2: str, epoch: int = None):
if not self.has(key, key2):
raise KeyError(f"{key}.{key2} is not found in stats: {self.get_all_keys()}")
if epoch is None:
epoch = self.get_epoch()
return self.stats[epoch][key][key2]
def get_keys(self, epoch: int = None) -> Tuple[str, ...]:
"""Returns keys1 e.g. train,eval."""
if epoch is None:
epoch = self.get_epoch()
return tuple(self.stats[epoch])
def get_keys2(self, key: str, epoch: int = None) -> Tuple[str, ...]:
"""Returns keys2 e.g. loss,acc."""
if epoch is None:
epoch = self.get_epoch()
d = self.stats[epoch][key]
keys2 = tuple(k for k in d if k not in ("time", "total_count"))
return keys2
def get_all_keys(self, epoch: int = None) -> Tuple[Tuple[str, str], ...]:
if epoch is None:
epoch = self.get_epoch()
all_keys = []
for key in self.stats[epoch]:
for key2 in self.stats[epoch][key]:
all_keys.append((key, key2))
return tuple(all_keys)
def matplotlib_plot(self, output_dir: Union[str, Path]):
"""Plot stats using Matplotlib and save images."""
keys2 = set.union(*[set(self.get_keys2(k)) for k in self.get_keys()])
for key2 in keys2:
keys = [k for k in self.get_keys() if key2 in self.get_keys2(k)]
plt = self._plot_stats(keys, key2)
p = output_dir / f"{key2}.png"
p.parent.mkdir(parents=True, exist_ok=True)
plt.savefig(p)
def _plot_stats(self, keys: Sequence[str], key2: str):
assert check_argument_types()
# str is also Sequence[str]
if isinstance(keys, str):
raise TypeError(f"Input as [{keys}]")
import matplotlib
matplotlib.use("agg")
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
plt.clf()
epochs = np.arange(1, self.get_epoch() + 1)
for key in keys:
y = [
self.stats[e][key][key2]
if e in self.stats
and key in self.stats[e]
and key2 in self.stats[e][key]
else np.nan
for e in epochs
]
assert len(epochs) == len(y), "Bug?"
plt.plot(epochs, y, label=key, marker="x")
plt.legend()
plt.title(f"epoch vs {key2}")
# Force integer tick for x-axis
plt.gca().get_xaxis().set_major_locator(ticker.MaxNLocator(integer=True))
plt.xlabel("epoch")
plt.ylabel(key2)
plt.grid()
return plt
def tensorboard_add_scalar(self, summary_writer: SummaryWriter, epoch: int = None):
if epoch is None:
epoch = self.get_epoch()
for key1 in self.get_keys(epoch):
for key2 in self.stats[epoch][key1]:
if key2 in ("time", "total_count"):
continue
summary_writer.add_scalar(
f"{key1}_{key2}_epoch",
self.stats[epoch][key1][key2],
epoch,
)
def wandb_log(self, epoch: int = None, commit: bool = True):
if epoch is None:
epoch = self.get_epoch()
d = {}
for key1 in self.get_keys(epoch):
for key2 in self.stats[epoch][key1]:
if key2 in ("time", "total_count"):
continue
d[f"{key1}_{key2}_epoch"] = self.stats[epoch][key1][key2]
d["epoch"] = epoch
wandb.log(d, commit=commit)
def state_dict(self):
return {"stats": self.stats, "epoch": self.epoch}
def load_state_dict(self, state_dict: dict):
self.epoch = state_dict["epoch"]
self.stats = state_dict["stats"]
|