tobiasc's picture
Initial commit
ad16788
"""VGG2L module definition for transformer encoder."""
from typing import Tuple
from typing import Union
import torch
class VGG2L(torch.nn.Module):
"""VGG2L module for custom encoder.
Args:
idim: Dimension of inputs
odim: Dimension of outputs
pos_enc: Positional encoding class
"""
def __init__(self, idim: int, odim: int, pos_enc: torch.nn.Module = None):
"""Construct a VGG2L object."""
super().__init__()
self.vgg2l = torch.nn.Sequential(
torch.nn.Conv2d(1, 64, 3, stride=1, padding=1),
torch.nn.ReLU(),
torch.nn.Conv2d(64, 64, 3, stride=1, padding=1),
torch.nn.ReLU(),
torch.nn.MaxPool2d((3, 2)),
torch.nn.Conv2d(64, 128, 3, stride=1, padding=1),
torch.nn.ReLU(),
torch.nn.Conv2d(128, 128, 3, stride=1, padding=1),
torch.nn.ReLU(),
torch.nn.MaxPool2d((2, 2)),
)
if pos_enc is not None:
self.output = torch.nn.Sequential(
torch.nn.Linear(128 * ((idim // 2) // 2), odim), pos_enc
)
else:
self.output = torch.nn.Linear(128 * ((idim // 2) // 2), odim)
def forward(
self, x: torch.Tensor, x_mask: torch.Tensor
) -> Union[
Tuple[torch.Tensor, torch.Tensor],
Tuple[Tuple[torch.Tensor, torch.Tensor], torch.Tensor],
]:
"""VGG2L forward for x.
Args:
x: Input tensor (B, T, idim)
x_mask: Input mask (B, 1, T)
Returns:
x: Output tensor (B, sub(T), odim)
or ((B, sub(T), odim), (B, sub(T), att_dim))
x_mask: Output mask (B, 1, sub(T))
"""
x = x.unsqueeze(1)
x = self.vgg2l(x)
b, c, t, f = x.size()
x = self.output(x.transpose(1, 2).contiguous().view(b, t, c * f))
if x_mask is not None:
x_mask = self.create_new_mask(x_mask)
return x, x_mask
def create_new_mask(self, x_mask: torch.Tensor) -> torch.Tensor:
"""Create a subsampled version of x_mask.
Args:
x_mask: Input mask (B, 1, T)
Returns:
x_mask: Output mask (B, 1, sub(T))
"""
x_t1 = x_mask.size(2) - (x_mask.size(2) % 3)
x_mask = x_mask[:, :, :x_t1][:, :, ::3]
x_t2 = x_mask.size(2) - (x_mask.size(2) % 2)
x_mask = x_mask[:, :, :x_t2][:, :, ::2]
return x_mask