conex / espnet2 /enh /layers /beamformer.py
tobiasc's picture
Initial commit
ad16788
raw
history blame contribute delete
No virus
23.5 kB
from distutils.version import LooseVersion
from typing import List
from typing import Optional
from typing import Union
import numpy as np
import torch
from torch_complex import functional as FC
from torch_complex.tensor import ComplexTensor
is_torch_1_1_plus = LooseVersion(torch.__version__) >= LooseVersion("1.1.0")
EPS = torch.finfo(torch.double).eps
def complex_norm(c: ComplexTensor) -> torch.Tensor:
return torch.sqrt((c.real ** 2 + c.imag ** 2).sum(dim=-1, keepdim=True) + EPS)
def get_rtf(
psd_speech: ComplexTensor,
psd_noise: ComplexTensor,
reference_vector: Union[int, torch.Tensor, None] = None,
iterations: int = 3,
use_torch_solver: bool = True,
) -> ComplexTensor:
"""Calculate the relative transfer function (RTF) using the power method.
Algorithm:
1) rtf = reference_vector
2) for i in range(iterations):
rtf = (psd_noise^-1 @ psd_speech) @ rtf
rtf = rtf / ||rtf||_2 # this normalization can be skipped
3) rtf = psd_noise @ rtf
4) rtf = rtf / rtf[..., ref_channel, :]
Note: 4) Normalization at the reference channel is not performed here.
Args:
psd_speech (ComplexTensor): speech covariance matrix (..., F, C, C)
psd_noise (ComplexTensor): noise covariance matrix (..., F, C, C)
reference_vector (torch.Tensor or int): (..., C) or scalar
iterations (int): number of iterations in power method
use_torch_solver (bool): Whether to use `solve` instead of `inverse`
Returns:
rtf (ComplexTensor): (..., F, C, 1)
"""
if use_torch_solver and is_torch_1_1_plus:
# torch.solve is required, which is only available after pytorch 1.1.0+
phi = FC.solve(psd_speech, psd_noise)[0]
else:
phi = FC.matmul(psd_noise.inverse2(), psd_speech)
rtf = (
phi[..., reference_vector, None]
if isinstance(reference_vector, int)
else FC.matmul(phi, reference_vector[..., None, :, None])
)
for _ in range(iterations - 2):
rtf = FC.matmul(phi, rtf)
# rtf = rtf / complex_norm(rtf)
rtf = FC.matmul(psd_speech, rtf)
return rtf
def get_mvdr_vector(
psd_s: ComplexTensor,
psd_n: ComplexTensor,
reference_vector: torch.Tensor,
use_torch_solver: bool = True,
diagonal_loading: bool = True,
diag_eps: float = 1e-7,
eps: float = 1e-8,
) -> ComplexTensor:
"""Return the MVDR (Minimum Variance Distortionless Response) vector:
h = (Npsd^-1 @ Spsd) / (Tr(Npsd^-1 @ Spsd)) @ u
Reference:
On optimal frequency-domain multichannel linear filtering
for noise reduction; M. Souden et al., 2010;
https://ieeexplore.ieee.org/document/5089420
Args:
psd_s (ComplexTensor): speech covariance matrix (..., F, C, C)
psd_n (ComplexTensor): observation/noise covariance matrix (..., F, C, C)
reference_vector (torch.Tensor): (..., C)
use_torch_solver (bool): Whether to use `solve` instead of `inverse`
diagonal_loading (bool): Whether to add a tiny term to the diagonal of psd_n
diag_eps (float):
eps (float):
Returns:
beamform_vector (ComplexTensor): (..., F, C)
""" # noqa: D400
if diagonal_loading:
psd_n = tik_reg(psd_n, reg=diag_eps, eps=eps)
if use_torch_solver and is_torch_1_1_plus:
# torch.solve is required, which is only available after pytorch 1.1.0+
numerator = FC.solve(psd_s, psd_n)[0]
else:
numerator = FC.matmul(psd_n.inverse2(), psd_s)
# ws: (..., C, C) / (...,) -> (..., C, C)
ws = numerator / (FC.trace(numerator)[..., None, None] + eps)
# h: (..., F, C_1, C_2) x (..., C_2) -> (..., F, C_1)
beamform_vector = FC.einsum("...fec,...c->...fe", [ws, reference_vector])
return beamform_vector
def get_mvdr_vector_with_rtf(
psd_n: ComplexTensor,
psd_speech: ComplexTensor,
psd_noise: ComplexTensor,
iterations: int = 3,
reference_vector: Union[int, torch.Tensor, None] = None,
normalize_ref_channel: Optional[int] = None,
use_torch_solver: bool = True,
diagonal_loading: bool = True,
diag_eps: float = 1e-7,
eps: float = 1e-8,
) -> ComplexTensor:
"""Return the MVDR (Minimum Variance Distortionless Response) vector
calculated with RTF:
h = (Npsd^-1 @ rtf) / (rtf^H @ Npsd^-1 @ rtf)
Reference:
On optimal frequency-domain multichannel linear filtering
for noise reduction; M. Souden et al., 2010;
https://ieeexplore.ieee.org/document/5089420
Args:
psd_n (ComplexTensor): observation/noise covariance matrix (..., F, C, C)
psd_speech (ComplexTensor): speech covariance matrix (..., F, C, C)
psd_noise (ComplexTensor): noise covariance matrix (..., F, C, C)
iterations (int): number of iterations in power method
reference_vector (torch.Tensor or int): (..., C) or scalar
normalize_ref_channel (int): reference channel for normalizing the RTF
use_torch_solver (bool): Whether to use `solve` instead of `inverse`
diagonal_loading (bool): Whether to add a tiny term to the diagonal of psd_n
diag_eps (float):
eps (float):
Returns:
beamform_vector (ComplexTensor): (..., F, C)
""" # noqa: H405, D205, D400
if diagonal_loading:
psd_noise = tik_reg(psd_noise, reg=diag_eps, eps=eps)
# (B, F, C, 1)
rtf = get_rtf(
psd_speech,
psd_noise,
reference_vector,
iterations=iterations,
use_torch_solver=use_torch_solver,
)
# numerator: (..., C_1, C_2) x (..., C_2, 1) -> (..., C_1)
if use_torch_solver and is_torch_1_1_plus:
# torch.solve is required, which is only available after pytorch 1.1.0+
numerator = FC.solve(rtf, psd_n)[0].squeeze(-1)
else:
numerator = FC.matmul(psd_n.inverse2(), rtf).squeeze(-1)
denominator = FC.einsum("...d,...d->...", [rtf.squeeze(-1).conj(), numerator])
if normalize_ref_channel is not None:
scale = rtf.squeeze(-1)[..., normalize_ref_channel, None].conj()
beamforming_vector = numerator * scale / (denominator.real.unsqueeze(-1) + eps)
else:
beamforming_vector = numerator / (denominator.real.unsqueeze(-1) + eps)
return beamforming_vector
def signal_framing(
signal: Union[torch.Tensor, ComplexTensor],
frame_length: int,
frame_step: int,
bdelay: int,
do_padding: bool = False,
pad_value: int = 0,
indices: List = None,
) -> Union[torch.Tensor, ComplexTensor]:
"""Expand `signal` into several frames, with each frame of length `frame_length`.
Args:
signal : (..., T)
frame_length: length of each segment
frame_step: step for selecting frames
bdelay: delay for WPD
do_padding: whether or not to pad the input signal at the beginning
of the time dimension
pad_value: value to fill in the padding
Returns:
torch.Tensor:
if do_padding: (..., T, frame_length)
else: (..., T - bdelay - frame_length + 2, frame_length)
"""
frame_length2 = frame_length - 1
# pad to the right at the last dimension of `signal` (time dimension)
if do_padding:
# (..., T) --> (..., T + bdelay + frame_length - 2)
signal = FC.pad(signal, (bdelay + frame_length2 - 1, 0), "constant", pad_value)
do_padding = False
if indices is None:
# [[ 0, 1, ..., frame_length2 - 1, frame_length2 - 1 + bdelay ],
# [ 1, 2, ..., frame_length2, frame_length2 + bdelay ],
# [ 2, 3, ..., frame_length2 + 1, frame_length2 + 1 + bdelay ],
# ...
# [ T-bdelay-frame_length2, ..., T-1-bdelay, T-1 ]]
indices = [
[*range(i, i + frame_length2), i + frame_length2 + bdelay - 1]
for i in range(0, signal.shape[-1] - frame_length2 - bdelay + 1, frame_step)
]
if isinstance(signal, ComplexTensor):
real = signal_framing(
signal.real,
frame_length,
frame_step,
bdelay,
do_padding,
pad_value,
indices,
)
imag = signal_framing(
signal.imag,
frame_length,
frame_step,
bdelay,
do_padding,
pad_value,
indices,
)
return ComplexTensor(real, imag)
else:
# (..., T - bdelay - frame_length + 2, frame_length)
signal = signal[..., indices]
# signal[..., :-1] = -signal[..., :-1]
return signal
def get_covariances(
Y: ComplexTensor,
inverse_power: torch.Tensor,
bdelay: int,
btaps: int,
get_vector: bool = False,
) -> ComplexTensor:
"""Calculates the power normalized spatio-temporal covariance
matrix of the framed signal.
Args:
Y : Complext STFT signal with shape (B, F, C, T)
inverse_power : Weighting factor with shape (B, F, T)
Returns:
Correlation matrix: (B, F, (btaps+1) * C, (btaps+1) * C)
Correlation vector: (B, F, btaps + 1, C, C)
""" # noqa: H405, D205, D400, D401
assert inverse_power.dim() == 3, inverse_power.dim()
assert inverse_power.size(0) == Y.size(0), (inverse_power.size(0), Y.size(0))
Bs, Fdim, C, T = Y.shape
# (B, F, C, T - bdelay - btaps + 1, btaps + 1)
Psi = signal_framing(Y, btaps + 1, 1, bdelay, do_padding=False)[
..., : T - bdelay - btaps + 1, :
]
# Reverse along btaps-axis:
# [tau, tau-bdelay, tau-bdelay-1, ..., tau-bdelay-frame_length+1]
Psi = FC.reverse(Psi, dim=-1)
Psi_norm = Psi * inverse_power[..., None, bdelay + btaps - 1 :, None]
# let T' = T - bdelay - btaps + 1
# (B, F, C, T', btaps + 1) x (B, F, C, T', btaps + 1)
# -> (B, F, btaps + 1, C, btaps + 1, C)
covariance_matrix = FC.einsum("bfdtk,bfetl->bfkdle", (Psi, Psi_norm.conj()))
# (B, F, btaps + 1, C, btaps + 1, C)
# -> (B, F, (btaps + 1) * C, (btaps + 1) * C)
covariance_matrix = covariance_matrix.view(
Bs, Fdim, (btaps + 1) * C, (btaps + 1) * C
)
if get_vector:
# (B, F, C, T', btaps + 1) x (B, F, C, T')
# --> (B, F, btaps +1, C, C)
covariance_vector = FC.einsum(
"bfdtk,bfet->bfked", (Psi_norm, Y[..., bdelay + btaps - 1 :].conj())
)
return covariance_matrix, covariance_vector
else:
return covariance_matrix
def get_WPD_filter(
Phi: ComplexTensor,
Rf: ComplexTensor,
reference_vector: torch.Tensor,
use_torch_solver: bool = True,
diagonal_loading: bool = True,
diag_eps: float = 1e-7,
eps: float = 1e-8,
) -> ComplexTensor:
"""Return the WPD vector.
WPD is the Weighted Power minimization Distortionless response
convolutional beamformer. As follows:
h = (Rf^-1 @ Phi_{xx}) / tr[(Rf^-1) @ Phi_{xx}] @ u
Reference:
T. Nakatani and K. Kinoshita, "A Unified Convolutional Beamformer
for Simultaneous Denoising and Dereverberation," in IEEE Signal
Processing Letters, vol. 26, no. 6, pp. 903-907, June 2019, doi:
10.1109/LSP.2019.2911179.
https://ieeexplore.ieee.org/document/8691481
Args:
Phi (ComplexTensor): (B, F, (btaps+1) * C, (btaps+1) * C)
is the PSD of zero-padded speech [x^T(t,f) 0 ... 0]^T.
Rf (ComplexTensor): (B, F, (btaps+1) * C, (btaps+1) * C)
is the power normalized spatio-temporal covariance matrix.
reference_vector (torch.Tensor): (B, (btaps+1) * C)
is the reference_vector.
use_torch_solver (bool): Whether to use `solve` instead of `inverse`
diagonal_loading (bool): Whether to add a tiny term to the diagonal of psd_n
diag_eps (float):
eps (float):
Returns:
filter_matrix (ComplexTensor): (B, F, (btaps + 1) * C)
"""
if diagonal_loading:
Rf = tik_reg(Rf, reg=diag_eps, eps=eps)
# numerator: (..., C_1, C_2) x (..., C_2, C_3) -> (..., C_1, C_3)
if use_torch_solver and is_torch_1_1_plus:
# torch.solve is required, which is only available after pytorch 1.1.0+
numerator = FC.solve(Phi, Rf)[0]
else:
numerator = FC.matmul(Rf.inverse2(), Phi)
# ws: (..., C, C) / (...,) -> (..., C, C)
ws = numerator / (FC.trace(numerator)[..., None, None] + eps)
# h: (..., F, C_1, C_2) x (..., C_2) -> (..., F, C_1)
beamform_vector = FC.einsum("...fec,...c->...fe", [ws, reference_vector])
# (B, F, (btaps + 1) * C)
return beamform_vector
def get_WPD_filter_v2(
Phi: ComplexTensor,
Rf: ComplexTensor,
reference_vector: torch.Tensor,
diagonal_loading: bool = True,
diag_eps: float = 1e-7,
eps: float = 1e-8,
) -> ComplexTensor:
"""Return the WPD vector (v2).
This implementaion is more efficient than `get_WPD_filter` as
it skips unnecessary computation with zeros.
Args:
Phi (ComplexTensor): (B, F, C, C)
is speech PSD.
Rf (ComplexTensor): (B, F, (btaps+1) * C, (btaps+1) * C)
is the power normalized spatio-temporal covariance matrix.
reference_vector (torch.Tensor): (B, C)
is the reference_vector.
diagonal_loading (bool): Whether to add a tiny term to the diagonal of psd_n
diag_eps (float):
eps (float):
Returns:
filter_matrix (ComplexTensor): (B, F, (btaps+1) * C)
"""
C = reference_vector.shape[-1]
if diagonal_loading:
Rf = tik_reg(Rf, reg=diag_eps, eps=eps)
inv_Rf = Rf.inverse2()
# (B, F, (btaps+1) * C, C)
inv_Rf_pruned = inv_Rf[..., :C]
# numerator: (..., C_1, C_2) x (..., C_2, C_3) -> (..., C_1, C_3)
numerator = FC.matmul(inv_Rf_pruned, Phi)
# ws: (..., (btaps+1) * C, C) / (...,) -> (..., (btaps+1) * C, C)
ws = numerator / (FC.trace(numerator[..., :C, :])[..., None, None] + eps)
# h: (..., F, C_1, C_2) x (..., C_2) -> (..., F, C_1)
beamform_vector = FC.einsum("...fec,...c->...fe", [ws, reference_vector])
# (B, F, (btaps+1) * C)
return beamform_vector
def get_WPD_filter_with_rtf(
psd_observed_bar: ComplexTensor,
psd_speech: ComplexTensor,
psd_noise: ComplexTensor,
iterations: int = 3,
reference_vector: Union[int, torch.Tensor, None] = None,
normalize_ref_channel: Optional[int] = None,
use_torch_solver: bool = True,
diagonal_loading: bool = True,
diag_eps: float = 1e-7,
eps: float = 1e-15,
) -> ComplexTensor:
"""Return the WPD vector calculated with RTF.
WPD is the Weighted Power minimization Distortionless response
convolutional beamformer. As follows:
h = (Rf^-1 @ vbar) / (vbar^H @ R^-1 @ vbar)
Reference:
T. Nakatani and K. Kinoshita, "A Unified Convolutional Beamformer
for Simultaneous Denoising and Dereverberation," in IEEE Signal
Processing Letters, vol. 26, no. 6, pp. 903-907, June 2019, doi:
10.1109/LSP.2019.2911179.
https://ieeexplore.ieee.org/document/8691481
Args:
psd_observed_bar (ComplexTensor): stacked observation covariance matrix
psd_speech (ComplexTensor): speech covariance matrix (..., F, C, C)
psd_noise (ComplexTensor): noise covariance matrix (..., F, C, C)
iterations (int): number of iterations in power method
reference_vector (torch.Tensor or int): (..., C) or scalar
normalize_ref_channel (int): reference channel for normalizing the RTF
use_torch_solver (bool): Whether to use `solve` instead of `inverse`
diagonal_loading (bool): Whether to add a tiny term to the diagonal of psd_n
diag_eps (float):
eps (float):
Returns:
beamform_vector (ComplexTensor)r: (..., F, C)
"""
C = psd_noise.size(-1)
if diagonal_loading:
psd_noise = tik_reg(psd_noise, reg=diag_eps, eps=eps)
# (B, F, C, 1)
rtf = get_rtf(
psd_speech,
psd_noise,
reference_vector,
iterations=iterations,
use_torch_solver=use_torch_solver,
)
# (B, F, (K+1)*C, 1)
rtf = FC.pad(rtf, (0, 0, 0, psd_observed_bar.shape[-1] - C), "constant", 0)
# numerator: (..., C_1, C_2) x (..., C_2, 1) -> (..., C_1)
if use_torch_solver and is_torch_1_1_plus:
# torch.solve is required, which is only available after pytorch 1.1.0+
numerator = FC.solve(rtf, psd_observed_bar)[0].squeeze(-1)
else:
numerator = FC.matmul(psd_observed_bar.inverse2(), rtf).squeeze(-1)
denominator = FC.einsum("...d,...d->...", [rtf.squeeze(-1).conj(), numerator])
if normalize_ref_channel is not None:
scale = rtf.squeeze(-1)[..., normalize_ref_channel, None].conj()
beamforming_vector = numerator * scale / (denominator.real.unsqueeze(-1) + eps)
else:
beamforming_vector = numerator / (denominator.real.unsqueeze(-1) + eps)
return beamforming_vector
def perform_WPD_filtering(
filter_matrix: ComplexTensor, Y: ComplexTensor, bdelay: int, btaps: int
) -> ComplexTensor:
"""Perform WPD filtering.
Args:
filter_matrix: Filter matrix (B, F, (btaps + 1) * C)
Y : Complex STFT signal with shape (B, F, C, T)
Returns:
enhanced (ComplexTensor): (B, F, T)
"""
# (B, F, C, T) --> (B, F, C, T, btaps + 1)
Ytilde = signal_framing(Y, btaps + 1, 1, bdelay, do_padding=True, pad_value=0)
Ytilde = FC.reverse(Ytilde, dim=-1)
Bs, Fdim, C, T = Y.shape
# --> (B, F, T, btaps + 1, C) --> (B, F, T, (btaps + 1) * C)
Ytilde = Ytilde.permute(0, 1, 3, 4, 2).contiguous().view(Bs, Fdim, T, -1)
# (B, F, T, 1)
enhanced = FC.einsum("...tc,...c->...t", [Ytilde, filter_matrix.conj()])
return enhanced
def tik_reg(mat: ComplexTensor, reg: float = 1e-8, eps: float = 1e-8) -> ComplexTensor:
"""Perform Tikhonov regularization (only modifying real part).
Args:
mat (ComplexTensor): input matrix (..., C, C)
reg (float): regularization factor
eps (float)
Returns:
ret (ComplexTensor): regularized matrix (..., C, C)
"""
# Add eps
C = mat.size(-1)
eye = torch.eye(C, dtype=mat.dtype, device=mat.device)
shape = [1 for _ in range(mat.dim() - 2)] + [C, C]
eye = eye.view(*shape).repeat(*mat.shape[:-2], 1, 1)
with torch.no_grad():
epsilon = FC.trace(mat).real[..., None, None] * reg
# in case that correlation_matrix is all-zero
epsilon = epsilon + eps
mat = mat + epsilon * eye
return mat
##############################################
# Below are for Multi-Frame MVDR beamforming #
##############################################
# modified from https://gitlab.uni-oldenburg.de/hura4843/deep-mfmvdr/-/blob/master/deep_mfmvdr (# noqa: E501)
def get_adjacent(spec: ComplexTensor, filter_length: int = 5) -> ComplexTensor:
"""Zero-pad and unfold stft, i.e.,
add zeros to the beginning so that, using the multi-frame signal model,
there will be as many output frames as input frames.
Args:
spec (ComplexTensor): input spectrum (B, F, T)
filter_length (int): length for frame extension
Returns:
ret (ComplexTensor): output spectrum (B, F, T, filter_length)
""" # noqa: D400
return (
FC.pad(spec, pad=[filter_length - 1, 0])
.unfold(dim=-1, size=filter_length, step=1)
.contiguous()
)
def get_adjacent_th(spec: torch.Tensor, filter_length: int = 5) -> torch.Tensor:
"""Zero-pad and unfold stft, i.e.,
add zeros to the beginning so that, using the multi-frame signal model,
there will be as many output frames as input frames.
Args:
spec (torch.Tensor): input spectrum (B, F, T, 2)
filter_length (int): length for frame extension
Returns:
ret (torch.Tensor): output spectrum (B, F, T, filter_length, 2)
""" # noqa: D400
return (
torch.nn.functional.pad(spec, pad=[0, 0, filter_length - 1, 0])
.unfold(dimension=-2, size=filter_length, step=1)
.transpose(-2, -1)
.contiguous()
)
def vector_to_Hermitian(vec):
"""Construct a Hermitian matrix from a vector of N**2 independent
real-valued elements.
Args:
vec (torch.Tensor): (..., N ** 2)
Returns:
mat (ComplexTensor): (..., N, N)
""" # noqa: H405, D205, D400
N = int(np.sqrt(vec.shape[-1]))
mat = torch.zeros(size=vec.shape[:-1] + (N, N, 2), device=vec.device)
# real component
triu = np.triu_indices(N, 0)
triu2 = np.triu_indices(N, 1) # above main diagonal
tril = (triu2[1], triu2[0]) # below main diagonal; for symmetry
mat[(...,) + triu + (np.zeros(triu[0].shape[0]),)] = vec[..., : triu[0].shape[0]]
start = triu[0].shape[0]
mat[(...,) + tril + (np.zeros(tril[0].shape[0]),)] = mat[
(...,) + triu2 + (np.zeros(triu2[0].shape[0]),)
]
# imaginary component
mat[(...,) + triu2 + (np.ones(triu2[0].shape[0]),)] = vec[
..., start : start + triu2[0].shape[0]
]
mat[(...,) + tril + (np.ones(tril[0].shape[0]),)] = -mat[
(...,) + triu2 + (np.ones(triu2[0].shape[0]),)
]
return ComplexTensor(mat[..., 0], mat[..., 1])
def get_mfmvdr_vector(gammax, Phi, use_torch_solver: bool = True, eps: float = EPS):
"""Compute conventional MFMPDR/MFMVDR filter.
Args:
gammax (ComplexTensor): (..., L, N)
Phi (ComplexTensor): (..., L, N, N)
use_torch_solver (bool): Whether to use `solve` instead of `inverse`
eps (float)
Returns:
beamforming_vector (ComplexTensor): (..., L, N)
"""
# (..., L, N)
if use_torch_solver and is_torch_1_1_plus:
# torch.solve is required, which is only available after pytorch 1.1.0+
numerator = FC.solve(gammax.unsqueeze(-1), Phi)[0].squeeze(-1)
else:
numerator = FC.matmul(Phi.inverse2(), gammax.unsqueeze(-1)).squeeze(-1)
denominator = FC.einsum("...d,...d->...", [gammax.conj(), numerator])
return numerator / (denominator.real.unsqueeze(-1) + eps)
def filter_minimum_gain_like(
G_min, w, y, alpha=None, k: float = 10.0, eps: float = EPS
):
"""Approximate a minimum gain operation.
speech_estimate = alpha w^H y + (1 - alpha) G_min Y,
where alpha = 1 / (1 + exp(-2 k x)), x = w^H y - G_min Y
Args:
G_min (float): minimum gain
w (ComplexTensor): filter coefficients (..., L, N)
y (ComplexTensor): buffered and stacked input (..., L, N)
alpha: mixing factor
k (float): scaling in tanh-like function
esp (float)
Returns:
output (ComplexTensor): minimum gain-filtered output
alpha (float): optional
"""
# (..., L)
filtered_input = FC.einsum("...d,...d->...", [w.conj(), y])
# (..., L)
Y = y[..., -1]
return minimum_gain_like(G_min, Y, filtered_input, alpha, k, eps)
def minimum_gain_like(
G_min, Y, filtered_input, alpha=None, k: float = 10.0, eps: float = EPS
):
if alpha is None:
diff = (filtered_input + eps).abs() - (G_min * Y + eps).abs()
alpha = 1.0 / (1.0 + torch.exp(-2 * k * diff))
return_alpha = True
else:
return_alpha = False
output = alpha * filtered_input + (1 - alpha) * G_min * Y
if return_alpha:
return output, alpha
else:
return output