# Copyright 2017 Johns Hopkins University (Shinji Watanabe) # Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) """RNN sequence-to-sequence speech recognition model (pytorch).""" import argparse from itertools import groupby import logging import math import os import chainer from chainer import reporter import editdistance import numpy as np import six import torch from espnet.nets.asr_interface import ASRInterface from espnet.nets.e2e_asr_common import label_smoothing_dist from espnet.nets.pytorch_backend.ctc import ctc_for from espnet.nets.pytorch_backend.frontends.feature_transform import ( feature_transform_for, # noqa: H301 ) from espnet.nets.pytorch_backend.frontends.frontend import frontend_for from espnet.nets.pytorch_backend.initialization import lecun_normal_init_parameters from espnet.nets.pytorch_backend.initialization import set_forget_bias_to_one from espnet.nets.pytorch_backend.nets_utils import get_subsample from espnet.nets.pytorch_backend.nets_utils import pad_list from espnet.nets.pytorch_backend.nets_utils import to_device from espnet.nets.pytorch_backend.nets_utils import to_torch_tensor from espnet.nets.pytorch_backend.rnn.argument import ( add_arguments_rnn_encoder_common, # noqa: H301 add_arguments_rnn_decoder_common, # noqa: H301 add_arguments_rnn_attention_common, # noqa: H301 ) from espnet.nets.pytorch_backend.rnn.attentions import att_for from espnet.nets.pytorch_backend.rnn.decoders import decoder_for from espnet.nets.pytorch_backend.rnn.encoders import encoder_for from espnet.nets.scorers.ctc import CTCPrefixScorer from espnet.utils.fill_missing_args import fill_missing_args CTC_LOSS_THRESHOLD = 10000 class Reporter(chainer.Chain): """A chainer reporter wrapper.""" def report(self, loss_ctc, loss_att, acc, cer_ctc, cer, wer, mtl_loss): """Report at every step.""" reporter.report({"loss_ctc": loss_ctc}, self) reporter.report({"loss_att": loss_att}, self) reporter.report({"acc": acc}, self) reporter.report({"cer_ctc": cer_ctc}, self) reporter.report({"cer": cer}, self) reporter.report({"wer": wer}, self) logging.info("mtl loss:" + str(mtl_loss)) reporter.report({"loss": mtl_loss}, self) class E2E(ASRInterface, torch.nn.Module): """E2E module. :param int idim: dimension of inputs :param int odim: dimension of outputs :param Namespace args: argument Namespace containing options """ @staticmethod def add_arguments(parser): """Add arguments.""" E2E.encoder_add_arguments(parser) E2E.attention_add_arguments(parser) E2E.decoder_add_arguments(parser) return parser @staticmethod def encoder_add_arguments(parser): """Add arguments for the encoder.""" group = parser.add_argument_group("E2E encoder setting") group = add_arguments_rnn_encoder_common(group) return parser @staticmethod def attention_add_arguments(parser): """Add arguments for the attention.""" group = parser.add_argument_group("E2E attention setting") group = add_arguments_rnn_attention_common(group) return parser @staticmethod def decoder_add_arguments(parser): """Add arguments for the decoder.""" group = parser.add_argument_group("E2E decoder setting") group = add_arguments_rnn_decoder_common(group) return parser def get_total_subsampling_factor(self): """Get total subsampling factor.""" if isinstance(self.enc, torch.nn.ModuleList): return self.enc[0].conv_subsampling_factor * int(np.prod(self.subsample)) else: return self.enc.conv_subsampling_factor * int(np.prod(self.subsample)) def __init__(self, idim, odim, args): """Construct an E2E object. :param int idim: dimension of inputs :param int odim: dimension of outputs :param Namespace args: argument Namespace containing options """ super(E2E, self).__init__() torch.nn.Module.__init__(self) # fill missing arguments for compatibility args = fill_missing_args(args, self.add_arguments) self.mtlalpha = args.mtlalpha assert 0.0 <= self.mtlalpha <= 1.0, "mtlalpha should be [0.0, 1.0]" self.etype = args.etype self.verbose = args.verbose # NOTE: for self.build method args.char_list = getattr(args, "char_list", None) self.char_list = args.char_list self.outdir = args.outdir self.space = args.sym_space self.blank = args.sym_blank self.reporter = Reporter() # below means the last number becomes eos/sos ID # note that sos/eos IDs are identical self.sos = odim - 1 self.eos = odim - 1 # subsample info self.subsample = get_subsample(args, mode="asr", arch="rnn") # label smoothing info if args.lsm_type and os.path.isfile(args.train_json): logging.info("Use label smoothing with " + args.lsm_type) labeldist = label_smoothing_dist( odim, args.lsm_type, transcript=args.train_json ) else: labeldist = None if getattr(args, "use_frontend", False): # use getattr to keep compatibility self.frontend = frontend_for(args, idim) self.feature_transform = feature_transform_for(args, (idim - 1) * 2) idim = args.n_mels else: self.frontend = None # encoder self.enc = encoder_for(args, idim, self.subsample) # ctc self.ctc = ctc_for(args, odim) # attention self.att = att_for(args) # decoder self.dec = decoder_for(args, odim, self.sos, self.eos, self.att, labeldist) # weight initialization self.init_like_chainer() # options for beam search if args.report_cer or args.report_wer: recog_args = { "beam_size": args.beam_size, "penalty": args.penalty, "ctc_weight": args.ctc_weight, "maxlenratio": args.maxlenratio, "minlenratio": args.minlenratio, "lm_weight": args.lm_weight, "rnnlm": args.rnnlm, "nbest": args.nbest, "space": args.sym_space, "blank": args.sym_blank, } self.recog_args = argparse.Namespace(**recog_args) self.report_cer = args.report_cer self.report_wer = args.report_wer else: self.report_cer = False self.report_wer = False self.rnnlm = None self.logzero = -10000000000.0 self.loss = None self.acc = None def init_like_chainer(self): """Initialize weight like chainer. chainer basically uses LeCun way: W ~ Normal(0, fan_in ** -0.5), b = 0 pytorch basically uses W, b ~ Uniform(-fan_in**-0.5, fan_in**-0.5) however, there are two exceptions as far as I know. - EmbedID.W ~ Normal(0, 1) - LSTM.upward.b[forget_gate_range] = 1 (but not used in NStepLSTM) """ lecun_normal_init_parameters(self) # exceptions # embed weight ~ Normal(0, 1) self.dec.embed.weight.data.normal_(0, 1) # forget-bias = 1.0 # https://discuss.pytorch.org/t/set-forget-gate-bias-of-lstm/1745 for i in six.moves.range(len(self.dec.decoder)): set_forget_bias_to_one(self.dec.decoder[i].bias_ih) def forward(self, xs_pad, ilens, ys_pad): """E2E forward. :param torch.Tensor xs_pad: batch of padded input sequences (B, Tmax, idim) :param torch.Tensor ilens: batch of lengths of input sequences (B) :param torch.Tensor ys_pad: batch of padded token id sequence tensor (B, Lmax) :return: loss value :rtype: torch.Tensor """ # 0. Frontend if self.frontend is not None: hs_pad, hlens, mask = self.frontend(to_torch_tensor(xs_pad), ilens) hs_pad, hlens = self.feature_transform(hs_pad, hlens) else: hs_pad, hlens = xs_pad, ilens # 1. Encoder hs_pad, hlens, _ = self.enc(hs_pad, hlens) # 2. CTC loss if self.mtlalpha == 0: self.loss_ctc = None else: self.loss_ctc = self.ctc(hs_pad, hlens, ys_pad) # 3. attention loss if self.mtlalpha == 1: self.loss_att, acc = None, None else: self.loss_att, acc, _ = self.dec(hs_pad, hlens, ys_pad) self.acc = acc # 4. compute cer without beam search if self.mtlalpha == 0 or self.char_list is None: cer_ctc = None else: cers = [] y_hats = self.ctc.argmax(hs_pad).data for i, y in enumerate(y_hats): y_hat = [x[0] for x in groupby(y)] y_true = ys_pad[i] seq_hat = [self.char_list[int(idx)] for idx in y_hat if int(idx) != -1] seq_true = [ self.char_list[int(idx)] for idx in y_true if int(idx) != -1 ] seq_hat_text = "".join(seq_hat).replace(self.space, " ") seq_hat_text = seq_hat_text.replace(self.blank, "") seq_true_text = "".join(seq_true).replace(self.space, " ") hyp_chars = seq_hat_text.replace(" ", "") ref_chars = seq_true_text.replace(" ", "") if len(ref_chars) > 0: cers.append( editdistance.eval(hyp_chars, ref_chars) / len(ref_chars) ) cer_ctc = sum(cers) / len(cers) if cers else None # 5. compute cer/wer if self.training or not (self.report_cer or self.report_wer): cer, wer = 0.0, 0.0 # oracle_cer, oracle_wer = 0.0, 0.0 else: if self.recog_args.ctc_weight > 0.0: lpz = self.ctc.log_softmax(hs_pad).data else: lpz = None word_eds, word_ref_lens, char_eds, char_ref_lens = [], [], [], [] nbest_hyps = self.dec.recognize_beam_batch( hs_pad, torch.tensor(hlens), lpz, self.recog_args, self.char_list, self.rnnlm, ) # remove and y_hats = [nbest_hyp[0]["yseq"][1:-1] for nbest_hyp in nbest_hyps] for i, y_hat in enumerate(y_hats): y_true = ys_pad[i] seq_hat = [self.char_list[int(idx)] for idx in y_hat if int(idx) != -1] seq_true = [ self.char_list[int(idx)] for idx in y_true if int(idx) != -1 ] seq_hat_text = "".join(seq_hat).replace(self.recog_args.space, " ") seq_hat_text = seq_hat_text.replace(self.recog_args.blank, "") seq_true_text = "".join(seq_true).replace(self.recog_args.space, " ") hyp_words = seq_hat_text.split() ref_words = seq_true_text.split() word_eds.append(editdistance.eval(hyp_words, ref_words)) word_ref_lens.append(len(ref_words)) hyp_chars = seq_hat_text.replace(" ", "") ref_chars = seq_true_text.replace(" ", "") char_eds.append(editdistance.eval(hyp_chars, ref_chars)) char_ref_lens.append(len(ref_chars)) wer = ( 0.0 if not self.report_wer else float(sum(word_eds)) / sum(word_ref_lens) ) cer = ( 0.0 if not self.report_cer else float(sum(char_eds)) / sum(char_ref_lens) ) alpha = self.mtlalpha if alpha == 0: self.loss = self.loss_att loss_att_data = float(self.loss_att) loss_ctc_data = None elif alpha == 1: self.loss = self.loss_ctc loss_att_data = None loss_ctc_data = float(self.loss_ctc) else: self.loss = alpha * self.loss_ctc + (1 - alpha) * self.loss_att loss_att_data = float(self.loss_att) loss_ctc_data = float(self.loss_ctc) loss_data = float(self.loss) if loss_data < CTC_LOSS_THRESHOLD and not math.isnan(loss_data): self.reporter.report( loss_ctc_data, loss_att_data, acc, cer_ctc, cer, wer, loss_data ) else: logging.warning("loss (=%f) is not correct", loss_data) return self.loss def scorers(self): """Scorers.""" return dict(decoder=self.dec, ctc=CTCPrefixScorer(self.ctc, self.eos)) def encode(self, x): """Encode acoustic features. :param ndarray x: input acoustic feature (T, D) :return: encoder outputs :rtype: torch.Tensor """ self.eval() ilens = [x.shape[0]] # subsample frame x = x[:: self.subsample[0], :] p = next(self.parameters()) h = torch.as_tensor(x, device=p.device, dtype=p.dtype) # make a utt list (1) to use the same interface for encoder hs = h.contiguous().unsqueeze(0) # 0. Frontend if self.frontend is not None: enhanced, hlens, mask = self.frontend(hs, ilens) hs, hlens = self.feature_transform(enhanced, hlens) else: hs, hlens = hs, ilens # 1. encoder hs, _, _ = self.enc(hs, hlens) return hs.squeeze(0) def recognize(self, x, recog_args, char_list, rnnlm=None): """E2E beam search. :param ndarray x: input acoustic feature (T, D) :param Namespace recog_args: argument Namespace containing options :param list char_list: list of characters :param torch.nn.Module rnnlm: language model module :return: N-best decoding results :rtype: list """ hs = self.encode(x).unsqueeze(0) # calculate log P(z_t|X) for CTC scores if recog_args.ctc_weight > 0.0: lpz = self.ctc.log_softmax(hs)[0] else: lpz = None # 2. Decoder # decode the first utterance y = self.dec.recognize_beam(hs[0], lpz, recog_args, char_list, rnnlm) return y def recognize_batch(self, xs, recog_args, char_list, rnnlm=None): """E2E batch beam search. :param list xs: list of input acoustic feature arrays [(T_1, D), (T_2, D), ...] :param Namespace recog_args: argument Namespace containing options :param list char_list: list of characters :param torch.nn.Module rnnlm: language model module :return: N-best decoding results :rtype: list """ prev = self.training self.eval() ilens = np.fromiter((xx.shape[0] for xx in xs), dtype=np.int64) # subsample frame xs = [xx[:: self.subsample[0], :] for xx in xs] xs = [to_device(self, to_torch_tensor(xx).float()) for xx in xs] xs_pad = pad_list(xs, 0.0) # 0. Frontend if self.frontend is not None: enhanced, hlens, mask = self.frontend(xs_pad, ilens) hs_pad, hlens = self.feature_transform(enhanced, hlens) else: hs_pad, hlens = xs_pad, ilens # 1. Encoder hs_pad, hlens, _ = self.enc(hs_pad, hlens) # calculate log P(z_t|X) for CTC scores if recog_args.ctc_weight > 0.0: lpz = self.ctc.log_softmax(hs_pad) normalize_score = False else: lpz = None normalize_score = True # 2. Decoder hlens = torch.tensor(list(map(int, hlens))) # make sure hlens is tensor y = self.dec.recognize_beam_batch( hs_pad, hlens, lpz, recog_args, char_list, rnnlm, normalize_score=normalize_score, ) if prev: self.train() return y def enhance(self, xs): """Forward only in the frontend stage. :param ndarray xs: input acoustic feature (T, C, F) :return: enhaned feature :rtype: torch.Tensor """ if self.frontend is None: raise RuntimeError("Frontend does't exist") prev = self.training self.eval() ilens = np.fromiter((xx.shape[0] for xx in xs), dtype=np.int64) # subsample frame xs = [xx[:: self.subsample[0], :] for xx in xs] xs = [to_device(self, to_torch_tensor(xx).float()) for xx in xs] xs_pad = pad_list(xs, 0.0) enhanced, hlensm, mask = self.frontend(xs_pad, ilens) if prev: self.train() return enhanced.cpu().numpy(), mask.cpu().numpy(), ilens def calculate_all_attentions(self, xs_pad, ilens, ys_pad): """E2E attention calculation. :param torch.Tensor xs_pad: batch of padded input sequences (B, Tmax, idim) :param torch.Tensor ilens: batch of lengths of input sequences (B) :param torch.Tensor ys_pad: batch of padded token id sequence tensor (B, Lmax) :return: attention weights with the following shape, 1) multi-head case => attention weights (B, H, Lmax, Tmax), 2) other case => attention weights (B, Lmax, Tmax). :rtype: float ndarray """ self.eval() with torch.no_grad(): # 0. Frontend if self.frontend is not None: hs_pad, hlens, mask = self.frontend(to_torch_tensor(xs_pad), ilens) hs_pad, hlens = self.feature_transform(hs_pad, hlens) else: hs_pad, hlens = xs_pad, ilens # 1. Encoder hpad, hlens, _ = self.enc(hs_pad, hlens) # 2. Decoder att_ws = self.dec.calculate_all_attentions(hpad, hlens, ys_pad) self.train() return att_ws def calculate_all_ctc_probs(self, xs_pad, ilens, ys_pad): """E2E CTC probability calculation. :param torch.Tensor xs_pad: batch of padded input sequences (B, Tmax) :param torch.Tensor ilens: batch of lengths of input sequences (B) :param torch.Tensor ys_pad: batch of padded token id sequence tensor (B, Lmax) :return: CTC probability (B, Tmax, vocab) :rtype: float ndarray """ probs = None if self.mtlalpha == 0: return probs self.eval() with torch.no_grad(): # 0. Frontend if self.frontend is not None: hs_pad, hlens, mask = self.frontend(to_torch_tensor(xs_pad), ilens) hs_pad, hlens = self.feature_transform(hs_pad, hlens) else: hs_pad, hlens = xs_pad, ilens # 1. Encoder hpad, hlens, _ = self.enc(hs_pad, hlens) # 2. CTC probs probs = self.ctc.softmax(hpad).cpu().numpy() self.train() return probs def subsample_frames(self, x): """Subsample speeh frames in the encoder.""" # subsample frame x = x[:: self.subsample[0], :] ilen = [x.shape[0]] h = to_device(self, torch.from_numpy(np.array(x, dtype=np.float32))) h.contiguous() return h, ilen