from abc import ABC from abc import abstractmethod from pathlib import Path from typing import Collection from typing import Dict from typing import Iterable from typing import Union import numpy as np import scipy.signal import soundfile from typeguard import check_argument_types from typeguard import check_return_type from espnet2.text.build_tokenizer import build_tokenizer from espnet2.text.cleaner import TextCleaner from espnet2.text.token_id_converter import TokenIDConverter class AbsPreprocessor(ABC): def __init__(self, train: bool): self.train = train @abstractmethod def __call__( self, uid: str, data: Dict[str, Union[str, np.ndarray]] ) -> Dict[str, np.ndarray]: raise NotImplementedError def framing( x, frame_length: int = 512, frame_shift: int = 256, centered: bool = True, padded: bool = True, ): if x.size == 0: raise ValueError("Input array size is zero") if frame_length < 1: raise ValueError("frame_length must be a positive integer") if frame_length > x.shape[-1]: raise ValueError("frame_length is greater than input length") if 0 >= frame_shift: raise ValueError("frame_shift must be greater than 0") if centered: pad_shape = [(0, 0) for _ in range(x.ndim - 1)] + [ (frame_length // 2, frame_length // 2) ] x = np.pad(x, pad_shape, mode="constant", constant_values=0) if padded: # Pad to integer number of windowed segments # I.e make x.shape[-1] = frame_length + (nseg-1)*nstep, # with integer nseg nadd = (-(x.shape[-1] - frame_length) % frame_shift) % frame_length pad_shape = [(0, 0) for _ in range(x.ndim - 1)] + [(0, nadd)] x = np.pad(x, pad_shape, mode="constant", constant_values=0) # Created strided array of data segments if frame_length == 1 and frame_length == frame_shift: result = x[..., None] else: shape = x.shape[:-1] + ( (x.shape[-1] - frame_length) // frame_shift + 1, frame_length, ) strides = x.strides[:-1] + (frame_shift * x.strides[-1], x.strides[-1]) result = np.lib.stride_tricks.as_strided(x, shape=shape, strides=strides) return result def detect_non_silence( x: np.ndarray, threshold: float = 0.01, frame_length: int = 1024, frame_shift: int = 512, window: str = "boxcar", ) -> np.ndarray: """Power based voice activity detection. Args: x: (Channel, Time) >>> x = np.random.randn(1000) >>> detect = detect_non_silence(x) >>> assert x.shape == detect.shape >>> assert detect.dtype == np.bool """ if x.shape[-1] < frame_length: return np.full(x.shape, fill_value=True, dtype=np.bool) if x.dtype.kind == "i": x = x.astype(np.float64) # framed_w: (C, T, F) framed_w = framing( x, frame_length=frame_length, frame_shift=frame_shift, centered=False, padded=True, ) framed_w *= scipy.signal.get_window(window, frame_length).astype(framed_w.dtype) # power: (C, T) power = (framed_w ** 2).mean(axis=-1) # mean_power: (C,) mean_power = power.mean(axis=-1) if np.all(mean_power == 0): return np.full(x.shape, fill_value=True, dtype=np.bool) # detect_frames: (C, T) detect_frames = power / mean_power > threshold # detects: (C, T, F) detects = np.broadcast_to( detect_frames[..., None], detect_frames.shape + (frame_shift,) ) # detects: (C, TF) detects = detects.reshape(*detect_frames.shape[:-1], -1) # detects: (C, TF) return np.pad( detects, [(0, 0)] * (x.ndim - 1) + [(0, x.shape[-1] - detects.shape[-1])], mode="edge", ) class CommonPreprocessor(AbsPreprocessor): def __init__( self, train: bool, token_type: str = None, token_list: Union[Path, str, Iterable[str]] = None, bpemodel: Union[Path, str, Iterable[str]] = None, text_cleaner: Collection[str] = None, g2p_type: str = None, unk_symbol: str = "", space_symbol: str = "", non_linguistic_symbols: Union[Path, str, Iterable[str]] = None, delimiter: str = None, rir_scp: str = None, rir_apply_prob: float = 1.0, noise_scp: str = None, noise_apply_prob: float = 1.0, noise_db_range: str = "3_10", speech_volume_normalize: float = None, speech_name: str = "speech", text_name: str = "text", ): super().__init__(train) self.train = train self.speech_name = speech_name self.text_name = text_name self.speech_volume_normalize = speech_volume_normalize self.rir_apply_prob = rir_apply_prob self.noise_apply_prob = noise_apply_prob if token_type is not None: if token_list is None: raise ValueError("token_list is required if token_type is not None") self.text_cleaner = TextCleaner(text_cleaner) self.tokenizer = build_tokenizer( token_type=token_type, bpemodel=bpemodel, delimiter=delimiter, space_symbol=space_symbol, non_linguistic_symbols=non_linguistic_symbols, g2p_type=g2p_type, ) self.token_id_converter = TokenIDConverter( token_list=token_list, unk_symbol=unk_symbol, ) else: self.text_cleaner = None self.tokenizer = None self.token_id_converter = None if train and rir_scp is not None: self.rirs = [] with open(rir_scp, "r", encoding="utf-8") as f: for line in f: sps = line.strip().split(None, 1) if len(sps) == 1: self.rirs.append(sps[0]) else: self.rirs.append(sps[1]) else: self.rirs = None if train and noise_scp is not None: self.noises = [] with open(noise_scp, "r", encoding="utf-8") as f: for line in f: sps = line.strip().split(None, 1) if len(sps) == 1: self.noises.append(sps[0]) else: self.noises.append(sps[1]) sps = noise_db_range.split("_") if len(sps) == 1: self.noise_db_low, self.noise_db_high = float(sps[0]) elif len(sps) == 2: self.noise_db_low, self.noise_db_high = float(sps[0]), float(sps[1]) else: raise ValueError( "Format error: '{noise_db_range}' e.g. -3_4 -> [-3db,4db]" ) else: self.noises = None def __call__( self, uid: str, data: Dict[str, Union[str, np.ndarray]] ) -> Dict[str, np.ndarray]: assert check_argument_types() if self.speech_name in data: if self.train and self.rirs is not None and self.noises is not None: speech = data[self.speech_name] nsamples = len(speech) # speech: (Nmic, Time) if speech.ndim == 1: speech = speech[None, :] else: speech = speech.T # Calc power on non shlence region power = (speech[detect_non_silence(speech)] ** 2).mean() # 1. Convolve RIR if self.rirs is not None and self.rir_apply_prob >= np.random.random(): rir_path = np.random.choice(self.rirs) if rir_path is not None: rir, _ = soundfile.read( rir_path, dtype=np.float64, always_2d=True ) # rir: (Nmic, Time) rir = rir.T # speech: (Nmic, Time) # Note that this operation doesn't change the signal length speech = scipy.signal.convolve(speech, rir, mode="full")[ :, : speech.shape[1] ] # Reverse mean power to the original power power2 = (speech[detect_non_silence(speech)] ** 2).mean() speech = np.sqrt(power / max(power2, 1e-10)) * speech # 2. Add Noise if ( self.noises is not None and self.rir_apply_prob >= np.random.random() ): noise_path = np.random.choice(self.noises) if noise_path is not None: noise_db = np.random.uniform( self.noise_db_low, self.noise_db_high ) with soundfile.SoundFile(noise_path) as f: if f.frames == nsamples: noise = f.read(dtype=np.float64, always_2d=True) elif f.frames < nsamples: offset = np.random.randint(0, nsamples - f.frames) # noise: (Time, Nmic) noise = f.read(dtype=np.float64, always_2d=True) # Repeat noise noise = np.pad( noise, [(offset, nsamples - f.frames - offset), (0, 0)], mode="wrap", ) else: offset = np.random.randint(0, f.frames - nsamples) f.seek(offset) # noise: (Time, Nmic) noise = f.read( nsamples, dtype=np.float64, always_2d=True ) if len(noise) != nsamples: raise RuntimeError(f"Something wrong: {noise_path}") # noise: (Nmic, Time) noise = noise.T noise_power = (noise ** 2).mean() scale = ( 10 ** (-noise_db / 20) * np.sqrt(power) / np.sqrt(max(noise_power, 1e-10)) ) speech = speech + scale * noise speech = speech.T ma = np.max(np.abs(speech)) if ma > 1.0: speech /= ma data[self.speech_name] = speech if self.speech_volume_normalize is not None: speech = data[self.speech_name] ma = np.max(np.abs(speech)) data[self.speech_name] = speech * self.speech_volume_normalize / ma if self.text_name in data and self.tokenizer is not None: text = data[self.text_name] text = self.text_cleaner(text) tokens = self.tokenizer.text2tokens(text) text_ints = self.token_id_converter.tokens2ids(tokens) data[self.text_name] = np.array(text_ints, dtype=np.int64) assert check_return_type(data) return data class CommonPreprocessor_multi(AbsPreprocessor): def __init__( self, train: bool, token_type: str = None, token_list: Union[Path, str, Iterable[str]] = None, bpemodel: Union[Path, str, Iterable[str]] = None, text_cleaner: Collection[str] = None, g2p_type: str = None, unk_symbol: str = "", space_symbol: str = "", non_linguistic_symbols: Union[Path, str, Iterable[str]] = None, delimiter: str = None, speech_name: str = "speech", text_name: list = ["text"], ): super().__init__(train) self.train = train self.speech_name = speech_name self.text_name = text_name if token_type is not None: if token_list is None: raise ValueError("token_list is required if token_type is not None") self.text_cleaner = TextCleaner(text_cleaner) self.tokenizer = build_tokenizer( token_type=token_type, bpemodel=bpemodel, delimiter=delimiter, space_symbol=space_symbol, non_linguistic_symbols=non_linguistic_symbols, g2p_type=g2p_type, ) self.token_id_converter = TokenIDConverter( token_list=token_list, unk_symbol=unk_symbol, ) else: self.text_cleaner = None self.tokenizer = None self.token_id_converter = None def __call__( self, uid: str, data: Dict[str, Union[str, np.ndarray]] ) -> Dict[str, np.ndarray]: assert check_argument_types() if self.speech_name in data: # Nothing now: candidates: # - STFT # - Fbank # - CMVN # - Data augmentation pass for text_n in self.text_name: if text_n in data and self.tokenizer is not None: text = data[text_n] text = self.text_cleaner(text) tokens = self.tokenizer.text2tokens(text) text_ints = self.token_id_converter.tokens2ids(tokens) data[text_n] = np.array(text_ints, dtype=np.int64) assert check_return_type(data) return data