"""Spec Augment module for preprocessing i.e., data augmentation""" import random import numpy from PIL import Image from PIL.Image import BICUBIC from espnet.transform.functional import FuncTrans def time_warp(x, max_time_warp=80, inplace=False, mode="PIL"): """time warp for spec augment move random center frame by the random width ~ uniform(-window, window) :param numpy.ndarray x: spectrogram (time, freq) :param int max_time_warp: maximum time frames to warp :param bool inplace: overwrite x with the result :param str mode: "PIL" (default, fast, not differentiable) or "sparse_image_warp" (slow, differentiable) :returns numpy.ndarray: time warped spectrogram (time, freq) """ window = max_time_warp if mode == "PIL": t = x.shape[0] if t - window <= window: return x # NOTE: randrange(a, b) emits a, a + 1, ..., b - 1 center = random.randrange(window, t - window) warped = random.randrange(center - window, center + window) + 1 # 1 ... t - 1 left = Image.fromarray(x[:center]).resize((x.shape[1], warped), BICUBIC) right = Image.fromarray(x[center:]).resize((x.shape[1], t - warped), BICUBIC) if inplace: x[:warped] = left x[warped:] = right return x return numpy.concatenate((left, right), 0) elif mode == "sparse_image_warp": import torch from espnet.utils import spec_augment # TODO(karita): make this differentiable again return spec_augment.time_warp(torch.from_numpy(x), window).numpy() else: raise NotImplementedError( "unknown resize mode: " + mode + ", choose one from (PIL, sparse_image_warp)." ) class TimeWarp(FuncTrans): _func = time_warp __doc__ = time_warp.__doc__ def __call__(self, x, train): if not train: return x return super().__call__(x) def freq_mask(x, F=30, n_mask=2, replace_with_zero=True, inplace=False): """freq mask for spec agument :param numpy.ndarray x: (time, freq) :param int n_mask: the number of masks :param bool inplace: overwrite :param bool replace_with_zero: pad zero on mask if true else use mean """ if inplace: cloned = x else: cloned = x.copy() num_mel_channels = cloned.shape[1] fs = numpy.random.randint(0, F, size=(n_mask, 2)) for f, mask_end in fs: f_zero = random.randrange(0, num_mel_channels - f) mask_end += f_zero # avoids randrange error if values are equal and range is empty if f_zero == f_zero + f: continue if replace_with_zero: cloned[:, f_zero:mask_end] = 0 else: cloned[:, f_zero:mask_end] = cloned.mean() return cloned class FreqMask(FuncTrans): _func = freq_mask __doc__ = freq_mask.__doc__ def __call__(self, x, train): if not train: return x return super().__call__(x) def time_mask(spec, T=40, n_mask=2, replace_with_zero=True, inplace=False): """freq mask for spec agument :param numpy.ndarray spec: (time, freq) :param int n_mask: the number of masks :param bool inplace: overwrite :param bool replace_with_zero: pad zero on mask if true else use mean """ if inplace: cloned = spec else: cloned = spec.copy() len_spectro = cloned.shape[0] ts = numpy.random.randint(0, T, size=(n_mask, 2)) for t, mask_end in ts: # avoid randint range error if len_spectro - t <= 0: continue t_zero = random.randrange(0, len_spectro - t) # avoids randrange error if values are equal and range is empty if t_zero == t_zero + t: continue mask_end += t_zero if replace_with_zero: cloned[t_zero:mask_end] = 0 else: cloned[t_zero:mask_end] = cloned.mean() return cloned class TimeMask(FuncTrans): _func = time_mask __doc__ = time_mask.__doc__ def __call__(self, x, train): if not train: return x return super().__call__(x) def spec_augment( x, resize_mode="PIL", max_time_warp=80, max_freq_width=27, n_freq_mask=2, max_time_width=100, n_time_mask=2, inplace=True, replace_with_zero=True, ): """spec agument apply random time warping and time/freq masking default setting is based on LD (Librispeech double) in Table 2 https://arxiv.org/pdf/1904.08779.pdf :param numpy.ndarray x: (time, freq) :param str resize_mode: "PIL" (fast, nondifferentiable) or "sparse_image_warp" (slow, differentiable) :param int max_time_warp: maximum frames to warp the center frame in spectrogram (W) :param int freq_mask_width: maximum width of the random freq mask (F) :param int n_freq_mask: the number of the random freq mask (m_F) :param int time_mask_width: maximum width of the random time mask (T) :param int n_time_mask: the number of the random time mask (m_T) :param bool inplace: overwrite intermediate array :param bool replace_with_zero: pad zero on mask if true else use mean """ assert isinstance(x, numpy.ndarray) assert x.ndim == 2 x = time_warp(x, max_time_warp, inplace=inplace, mode=resize_mode) x = freq_mask( x, max_freq_width, n_freq_mask, inplace=inplace, replace_with_zero=replace_with_zero, ) x = time_mask( x, max_time_width, n_time_mask, inplace=inplace, replace_with_zero=replace_with_zero, ) return x class SpecAugment(FuncTrans): _func = spec_augment __doc__ = spec_augment.__doc__ def __call__(self, x, train): if not train: return x return super().__call__(x)