Spaces:
Runtime error
Runtime error
Ubuntu
commited on
Commit
·
7e6795e
1
Parent(s):
87df952
update
Browse files
app.py
CHANGED
@@ -3,86 +3,162 @@ import requests
|
|
3 |
import time
|
4 |
from ast import literal_eval
|
5 |
|
6 |
-
|
7 |
-
def infer(
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
15 |
|
16 |
model_name_map = {
|
17 |
"GPT-JT-6B-v1": "Together-gpt-JT-6B-v1",
|
18 |
}
|
19 |
-
|
20 |
-
my_post_dict = {
|
21 |
-
"type": "general",
|
22 |
-
"payload": {
|
23 |
-
"max_tokens": int(max_new_tokens),
|
24 |
-
"n": int(num_completions),
|
25 |
-
"temperature": float(temperature),
|
26 |
-
"top_p": float(top_p),
|
27 |
-
"model": model_name_map[model_name],
|
28 |
-
"prompt": [prompt],
|
29 |
-
"request_type": "language-model-inference",
|
30 |
-
"stop": stop.split(";"),
|
31 |
-
"best_of": 1,
|
32 |
-
"echo": False,
|
33 |
-
"seed": int(seed),
|
34 |
-
"prompt_embedding": False,
|
35 |
-
},
|
36 |
-
"returned_payload": {},
|
37 |
-
"status": "submitted",
|
38 |
-
"source": "dalle",
|
39 |
-
}
|
40 |
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
|
|
|
|
|
|
|
44 |
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
-
|
50 |
-
break
|
51 |
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
53 |
|
|
|
|
|
54 |
|
55 |
-
st.title("GPT-JT")
|
56 |
-
|
57 |
-
col1, col2 = st.columns([1, 3])
|
58 |
-
|
59 |
-
with col1:
|
60 |
-
model_name = st.selectbox("Model", ["GPT-JT-6B-v1"])
|
61 |
-
max_new_tokens = st.text_input('Max new tokens', "10")
|
62 |
-
temperature = st.text_input('temperature', "0.0")
|
63 |
-
top_p = st.text_input('top_p', "1.0")
|
64 |
-
num_completions = st.text_input('num_completions (only the best one will be returend)', "1")
|
65 |
-
stop = st.text_input('stop, split by;', r'\n')
|
66 |
-
seed = st.text_input('seed', "42")
|
67 |
-
|
68 |
-
with col2:
|
69 |
-
s_example = "Please answer the following question:\n\nQuestion: Where is Zurich?\nAnswer:"
|
70 |
-
prompt = st.text_area(
|
71 |
-
"Prompt",
|
72 |
-
value=s_example,
|
73 |
-
max_chars=4096,
|
74 |
-
height=400,
|
75 |
-
)
|
76 |
-
|
77 |
-
generated_area = st.empty()
|
78 |
-
generated_area.text("(Generate here)")
|
79 |
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
-
if
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
)
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import time
|
4 |
from ast import literal_eval
|
5 |
|
6 |
+
|
7 |
+
def infer(
|
8 |
+
prompt,
|
9 |
+
model_name,
|
10 |
+
max_new_tokens=10,
|
11 |
+
temperature=0.0,
|
12 |
+
top_p=1.0,
|
13 |
+
top_k=40,
|
14 |
+
num_completions=1,
|
15 |
+
seed=42,
|
16 |
+
stop="\n"
|
17 |
+
):
|
18 |
|
19 |
model_name_map = {
|
20 |
"GPT-JT-6B-v1": "Together-gpt-JT-6B-v1",
|
21 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
max_new_tokens = int(max_new_tokens)
|
24 |
+
num_completions = int(num_completions)
|
25 |
+
temperature = float(temperature)
|
26 |
+
top_p = float(top_p)
|
27 |
+
stop = stop.split(";")
|
28 |
+
seed = seed
|
29 |
|
30 |
+
assert 0 <= max_new_tokens <= 256
|
31 |
+
assert 1 <= num_completions <= 5
|
32 |
+
assert 0.0 <= temperature <= 10.0
|
33 |
+
assert 0.0 <= top_p <= 1.0
|
34 |
|
35 |
+
if temperature == 0.0:
|
36 |
+
temperature = 1.0
|
37 |
+
top_k = 1
|
38 |
+
|
39 |
+
result = await st.session_state.together_web3.language_model_inference(
|
40 |
+
from_dict(
|
41 |
+
data_class=LanguageModelInferenceRequest,
|
42 |
+
data={
|
43 |
+
"model": model_name_map[model_name],
|
44 |
+
"max_tokens": max_new_tokens,
|
45 |
+
"prompt": prompt,
|
46 |
+
"n": num_completions,
|
47 |
+
"temperature": temperature,
|
48 |
+
"top_k": top_k,
|
49 |
+
"top_p": top_p,
|
50 |
+
"stop": stop,
|
51 |
+
"seed": seed,
|
52 |
+
"echo": False,
|
53 |
+
}
|
54 |
+
),
|
55 |
+
)
|
56 |
+
|
57 |
+
generated_text = result.choices[0].text
|
58 |
+
|
59 |
+
for stop_word in stop:
|
60 |
+
if stop_word in result:
|
61 |
+
generated_text = generated_text[:generated_text.find(stop_word)]
|
62 |
+
|
63 |
+
return generated_text
|
64 |
+
|
65 |
+
def set_preset():
|
66 |
+
if st.session_state.preset == "Classification":
|
67 |
|
68 |
+
st.session_state.prompt = '''Please classify the given sentence.
|
69 |
+
Possible labels:
|
70 |
+
1. <label_0>
|
71 |
+
2. <label_1>
|
72 |
+
|
73 |
+
Input: <sentence_0>
|
74 |
+
Label: <label_0>
|
75 |
+
|
76 |
+
Input: <sentence_1>
|
77 |
+
Label:'''
|
78 |
+
st.session_state.temperature = "0.0"
|
79 |
+
st.session_state.top_p = "1.0"
|
80 |
|
81 |
+
elif st.session_state.preset == "Generation":
|
|
|
82 |
|
83 |
+
st.session_state.prompt = '''Please write a story given keywords.
|
84 |
+
|
85 |
+
Input: bear, honey
|
86 |
+
Story:'''
|
87 |
+
st.session_state.temperature = "1.0"
|
88 |
+
st.session_state.top_p = "0.5"
|
89 |
|
90 |
+
else:
|
91 |
+
pass
|
92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
+
def main():
|
95 |
+
|
96 |
+
if 'preset' not in st.session_state:
|
97 |
+
st.session_state.preset = "Classification"
|
98 |
+
|
99 |
+
if 'prompt' not in st.session_state:
|
100 |
+
st.session_state.prompt = "Please answer the following question:\n\nQuestion: Where is Zurich?\nAnswer:"
|
101 |
+
|
102 |
+
if 'temperature' not in st.session_state:
|
103 |
+
st.session_state.temperature = "0.0"
|
104 |
|
105 |
+
if 'top_p' not in st.session_state:
|
106 |
+
st.session_state.top_p = "1.0"
|
107 |
+
|
108 |
+
if 'top_k' not in st.session_state:
|
109 |
+
st.session_state.top_k = "40"
|
110 |
+
|
111 |
+
if 'together_web3' not in st.session_state:
|
112 |
+
st.session_state.together_web3 = TogetherWeb3()
|
113 |
+
|
114 |
+
|
115 |
+
st.title("GPT-JT")
|
116 |
+
|
117 |
+
col1, col2 = st.columns([1, 3])
|
118 |
+
|
119 |
+
with col1:
|
120 |
+
model_name = st.selectbox("Model", ["GPT-JT-6B-v1"])
|
121 |
+
max_new_tokens = st.text_input('Max new tokens', "10")
|
122 |
+
temperature = st.text_input('temperature', st.session_state.temperature)
|
123 |
+
top_k = st.text_input('top_k', st.session_state.top_k)
|
124 |
+
top_p = st.text_input('top_p', st.session_state.top_p)
|
125 |
+
# num_completions = st.text_input('num_completions (only the best one will be returend)', "1")
|
126 |
+
num_completions = "1"
|
127 |
+
stop = st.text_input('stop, split by;', r'\n')
|
128 |
+
# seed = st.text_input('seed', "42")
|
129 |
+
seed = "42"
|
130 |
+
|
131 |
+
with col2:
|
132 |
+
|
133 |
+
preset = st.radio(
|
134 |
+
"Recommended Configurations",
|
135 |
+
('Classification', 'Generation'),
|
136 |
+
on_change=set_preset,
|
137 |
+
key="preset",
|
138 |
+
horizontal=True
|
139 |
)
|
140 |
+
|
141 |
+
prompt = st.text_area(
|
142 |
+
"Prompt",
|
143 |
+
value=st.session_state.prompt,
|
144 |
+
max_chars=4096,
|
145 |
+
height=400,
|
146 |
+
)
|
147 |
+
|
148 |
+
generated_area = st.empty()
|
149 |
+
generated_area.text("(Generate here)")
|
150 |
+
|
151 |
+
button_submit = st.button("Submit")
|
152 |
+
|
153 |
+
if button_submit:
|
154 |
+
generated_area.text(prompt)
|
155 |
+
report_text = infer(
|
156 |
+
prompt, model_name=model_name, max_new_tokens=max_new_tokens, temperature=temperature, top_p=top_p, top_k=top_k,
|
157 |
+
num_completions=num_completions, seed=seed, stop=literal_eval("'''"+stop+"'''"),
|
158 |
+
)
|
159 |
+
generated_area.text(prompt + report_text)
|
160 |
+
|
161 |
+
|
162 |
+
|
163 |
+
if __name__ == '__main__':
|
164 |
+
main()
|