Spaces:
Runtime error
Runtime error
File size: 6,700 Bytes
7efd637 b6ef90b c33dbd2 ca8dc25 5ee7ec4 bd796ec ca8dc25 c33dbd2 c27316e e98c6cb c27316e 04fcd0b c27316e 04fcd0b d107cdf c2ebbce 00c5acf 5ee7ec4 26df791 00c5acf 5fc2eb2 00c5acf c27316e efae69e 00c5acf 5fc2eb2 efae69e c27316e 26df791 8362128 26df791 8362128 00c5acf 8362128 26df791 8362128 5fc2eb2 00c5acf 5fc2eb2 00c5acf 5fc2eb2 00c5acf 5fc2eb2 00c5acf 5fc2eb2 00c5acf 5fc2eb2 00c5acf 5fc2eb2 00c5acf 5fc2eb2 8362128 5fc2eb2 00c5acf 5fc2eb2 8362128 00c5acf 5fc2eb2 00c5acf 9dc7fb7 efae69e 00c5acf bd796ec 2690895 bd796ec efae69e bd796ec 26df791 bd796ec 00c5acf 6719d1c 26df791 00c5acf 8362128 efae69e 20b1f08 00c5acf bd796ec 00c5acf bd796ec 00c5acf 5fc2eb2 82ee039 034341f 20b1f08 efae69e 20b1f08 efae69e c2ebbce efae69e 20b1f08 efae69e 20b1f08 034341f 8362128 7efd637 c33dbd2 8362128 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
import gradio as gr
from PIL import Image
import requests
import os
from together import Together
import base64
import io
# Initialize Together client
client = None
def initialize_client(api_key=None):
global client
if api_key:
os.environ["TOGETHER_API_KEY"] = api_key
if "TOGETHER_API_KEY" in os.environ:
client = Together()
else:
raise ValueError("Please provide a Together API Key")
def encode_image(image_path):
try:
with Image.open(image_path) as img:
buffered = io.BytesIO()
img.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode('utf-8')
except Exception as e:
print(f"Error encoding image: {e}")
raise e
def bot_streaming(message, history, together_api_key, max_new_tokens=250, temperature=0.7):
# Initialize history if it's None
if history is None:
history = []
# Initialize the Together client if not already done
if client is None:
try:
initialize_client(together_api_key)
except Exception as e:
# Append error to history and yield
history.append(["Error initializing client", str(e)])
yield history
return
prompt = "You are a helpful AI assistant. Analyze the image provided (if any) and respond to the user's query or comment."
messages = [{"role": "system", "content": prompt}]
# Build the conversation history for the API
for idx, (user_msg, assistant_msg) in enumerate(history):
# Append user messages
messages.append({
"role": "user",
"content": [
{"type": "text", "text": user_msg}
]
})
# Append assistant messages
messages.append({
"role": "assistant",
"content": [
{"type": "text", "text": assistant_msg}
]
})
# Prepare the current message
content = []
user_text = ""
try:
if isinstance(message, dict):
# Handle text input
if 'text' in message and message['text']:
user_text = message['text']
content.append({"type": "text", "text": user_text})
# Handle image input
if 'files' in message and len(message['files']) > 0:
file_info = message['files'][0]
if isinstance(file_info, dict) and 'path' in file_info:
image_path = file_info['path']
elif isinstance(file_info, str):
image_path = file_info
else:
raise ValueError("Invalid file information provided.")
# Encode the image to base64
image_base64 = encode_image(image_path)
content.append({
"type": "image_url",
"image_url": {"url": f"data:image/png;base64,{image_base64}"}
})
user_text += "\n[User uploaded an image]"
else:
# If message is a string
user_text = message
content.append({"type": "text", "text": user_text})
except Exception as e:
# If there's an error processing the input, append it to history and yield
error_message = f"An error occurred while processing your input: {str(e)}"
print(error_message) # Debug statement
history.append([user_text or "[Invalid input]", error_message])
yield history
return
# Append the new user message with an empty assistant response
history.append([user_text, ""])
yield history # Yield the updated history to show the user's message immediately
# Append the current user message to the API messages
messages.append({"role": "user", "content": content})
try:
# Call the Together AI API with streaming
stream = client.chat.completions.create(
model="meta-llama/Llama-Vision-Free",
messages=messages,
max_tokens=max_new_tokens,
temperature=temperature,
stream=True,
)
response = ""
for chunk in stream:
# Extract the content from the API response
chunk_content = chunk.choices[0].delta.content or ""
response += chunk_content
# Update the last assistant message in history
if history:
history[-1][1] = response
yield history
else:
# If history is somehow empty, append the response
history.append(["", response])
yield history
if not response:
# If no response was generated, notify the user
history[-1][1] = "No response generated. Please try again."
yield history
except Exception as e:
# Handle exceptions from the API call
error_message = ""
if "Request Entity Too Large" in str(e):
error_message = "The image is too large. Please try with a smaller image or compress the existing one."
else:
error_message = f"An error occurred: {str(e)}"
print(error_message) # Debug statement
if history:
history[-1][1] = error_message
else:
history.append(["", error_message])
yield history
with gr.Blocks() as demo:
gr.Markdown("# Meta Llama-3.2-11B-Vision-Instruct (FREE)")
gr.Markdown("Try the new Llama 3.2 11B Vision API by Meta for free through Together AI. Upload an image, and start chatting about it. Just paste in your Together AI API key and get started!")
with gr.Row():
together_api_key = gr.Textbox(
label="Together API Key",
placeholder="Enter your TOGETHER_API_KEY here",
type="password"
)
with gr.Row():
max_new_tokens = gr.Slider(
minimum=10,
maximum=500,
value=250,
step=10,
label="Maximum number of new tokens",
)
temperature = gr.Number(
value=0.7,
minimum=0,
maximum=1,
step=0.1,
label="Temperature"
)
chatbot = gr.Chatbot()
msg = gr.MultimodalTextbox(label="Enter text or upload an image")
clear = gr.Button("Clear")
msg.submit(
bot_streaming,
inputs=[msg, chatbot, together_api_key, max_new_tokens, temperature],
outputs=chatbot
)
clear.click(lambda: [], None, chatbot, queue=False)
if __name__ == "__main__":
demo.launch(debug=True)
|