Spaces:
Runtime error
Runtime error
import gradio as gr | |
from PIL import Image | |
import requests | |
import os | |
from together import Together | |
import base64 | |
import io | |
# Initialize Together client | |
client = None | |
def initialize_client(api_key=None): | |
global client | |
if api_key: | |
os.environ["TOGETHER_API_KEY"] = api_key | |
if "TOGETHER_API_KEY" in os.environ: | |
client = Together() | |
else: | |
raise ValueError("Please provide a Together API Key") | |
def encode_image(image_path): | |
try: | |
with Image.open(image_path) as img: | |
buffered = io.BytesIO() | |
img.save(buffered, format="PNG") | |
return base64.b64encode(buffered.getvalue()).decode('utf-8') | |
except Exception as e: | |
print(f"Error encoding image: {e}") | |
raise e | |
def bot_streaming(message, history, together_api_key, max_new_tokens=250, temperature=0.7): | |
# Initialize history if it's None | |
if history is None: | |
history = [] | |
# Initialize the Together client if not already done | |
if client is None: | |
try: | |
initialize_client(together_api_key) | |
except Exception as e: | |
# Append error to history and yield | |
history.append(["Error initializing client", str(e)]) | |
yield history | |
return | |
prompt = "You are a helpful AI assistant. Analyze the image provided (if any) and respond to the user's query or comment." | |
messages = [{"role": "system", "content": prompt}] | |
# Build the conversation history for the API | |
for idx, (user_msg, assistant_msg) in enumerate(history): | |
# Append user messages | |
messages.append({ | |
"role": "user", | |
"content": [ | |
{"type": "text", "text": user_msg} | |
] | |
}) | |
# Append assistant messages | |
messages.append({ | |
"role": "assistant", | |
"content": [ | |
{"type": "text", "text": assistant_msg} | |
] | |
}) | |
# Prepare the current message | |
content = [] | |
user_text = "" | |
try: | |
if isinstance(message, dict): | |
# Handle text input | |
if 'text' in message and message['text']: | |
user_text = message['text'] | |
content.append({"type": "text", "text": user_text}) | |
# Handle image input | |
if 'files' in message and len(message['files']) > 0: | |
file_info = message['files'][0] | |
if isinstance(file_info, dict) and 'path' in file_info: | |
image_path = file_info['path'] | |
elif isinstance(file_info, str): | |
image_path = file_info | |
else: | |
raise ValueError("Invalid file information provided.") | |
# Encode the image to base64 | |
image_base64 = encode_image(image_path) | |
content.append({ | |
"type": "image_url", | |
"image_url": {"url": f"data:image/png;base64,{image_base64}"} | |
}) | |
user_text += "\n[User uploaded an image]" | |
else: | |
# If message is a string | |
user_text = message | |
content.append({"type": "text", "text": user_text}) | |
except Exception as e: | |
# If there's an error processing the input, append it to history and yield | |
error_message = f"An error occurred while processing your input: {str(e)}" | |
print(error_message) # Debug statement | |
history.append([user_text or "[Invalid input]", error_message]) | |
yield history | |
return | |
# Append the new user message with an empty assistant response | |
history.append([user_text, ""]) | |
yield history # Yield the updated history to show the user's message immediately | |
# Append the current user message to the API messages | |
messages.append({"role": "user", "content": content}) | |
try: | |
# Call the Together AI API with streaming | |
stream = client.chat.completions.create( | |
model="meta-llama/Llama-Vision-Free", | |
messages=messages, | |
max_tokens=max_new_tokens, | |
temperature=temperature, | |
stream=True, | |
) | |
response = "" | |
for chunk in stream: | |
# Extract the content from the API response | |
chunk_content = chunk.choices[0].delta.content or "" | |
response += chunk_content | |
# Update the last assistant message in history | |
if history: | |
history[-1][1] = response | |
yield history | |
else: | |
# If history is somehow empty, append the response | |
history.append(["", response]) | |
yield history | |
if not response: | |
# If no response was generated, notify the user | |
history[-1][1] = "No response generated. Please try again." | |
yield history | |
except Exception as e: | |
# Handle exceptions from the API call | |
error_message = "" | |
if "Request Entity Too Large" in str(e): | |
error_message = "The image is too large. Please try with a smaller image or compress the existing one." | |
else: | |
error_message = f"An error occurred: {str(e)}" | |
print(error_message) # Debug statement | |
if history: | |
history[-1][1] = error_message | |
else: | |
history.append(["", error_message]) | |
yield history | |
with gr.Blocks() as demo: | |
gr.Markdown("# Meta Llama-3.2-11B-Vision-Instruct (FREE)") | |
gr.Markdown("Try the new Llama 3.2 11B Vision API by Meta for free through Together AI. Upload an image, and start chatting about it. Just paste in your Together AI API key and get started!") | |
with gr.Row(): | |
together_api_key = gr.Textbox( | |
label="Together API Key", | |
placeholder="Enter your TOGETHER_API_KEY here", | |
type="password" | |
) | |
with gr.Row(): | |
max_new_tokens = gr.Slider( | |
minimum=10, | |
maximum=500, | |
value=250, | |
step=10, | |
label="Maximum number of new tokens", | |
) | |
temperature = gr.Number( | |
value=0.7, | |
minimum=0, | |
maximum=1, | |
step=0.1, | |
label="Temperature" | |
) | |
chatbot = gr.Chatbot() | |
msg = gr.MultimodalTextbox(label="Enter text or upload an image") | |
clear = gr.Button("Clear") | |
msg.submit( | |
bot_streaming, | |
inputs=[msg, chatbot, together_api_key, max_new_tokens, temperature], | |
outputs=chatbot | |
) | |
clear.click(lambda: [], None, chatbot, queue=False) | |
if __name__ == "__main__": | |
demo.launch(debug=True) | |