Spaces:
Runtime error
Runtime error
import gradio as gr | |
from PIL import Image | |
import requests | |
import os | |
from together import Together | |
import base64 | |
import io | |
# Initialize Together client | |
client = None | |
def initialize_client(api_key=None): | |
global client | |
if api_key: | |
os.environ["TOGETHER_API_KEY"] = api_key | |
if "TOGETHER_API_KEY" in os.environ: | |
client = Together() | |
else: | |
raise ValueError("Please provide a Together API Key") | |
def encode_image(image_path): | |
with Image.open(image_path) as img: | |
buffered = io.BytesIO() | |
img.save(buffered, format="PNG") | |
return base64.b64encode(buffered.getvalue()).decode('utf-8') | |
def bot_streaming(message, history, together_api_key, max_new_tokens=250, temperature=0.7): | |
if history is None: | |
history = [] | |
if client is None: | |
try: | |
initialize_client(together_api_key) | |
except Exception as e: | |
# Initialize history with error message | |
history.append(["Error initializing client", str(e)]) | |
yield history | |
return | |
prompt = "You are a helpful AI assistant. Analyze the image provided (if any) and respond to the user's query or comment." | |
messages = [{"role": "system", "content": prompt}] | |
# Build the conversation history | |
for user_msg, assistant_msg in history: | |
messages.append({"role": "user", "content": [{"type": "text", "text": user_msg}]}) | |
messages.append({"role": "assistant", "content": [{"type": "text", "text": assistant_msg}]}) | |
# Prepare the current message | |
content = [] | |
user_text = "" | |
try: | |
if isinstance(message, dict): | |
if 'text' in message and message['text']: | |
user_text = message['text'] | |
content.append({"type": "text", "text": user_text}) | |
if 'files' in message and len(message['files']) > 0: | |
file_info = message['files'][0] | |
if isinstance(file_info, dict) and 'name' in file_info: | |
image_path = file_info['name'] | |
elif isinstance(file_info, str): | |
image_path = file_info | |
else: | |
raise ValueError("Invalid file information.") | |
image_base64 = encode_image(image_path) | |
content.append({"type": "image_url", "image_url": {"url": f"data:image/png;base64,{image_base64}"}}) | |
user_text += "\n[User uploaded an image]" | |
else: | |
user_text = message | |
content.append({"type": "text", "text": user_text}) | |
except Exception as e: | |
# Update history before yielding | |
history.append([user_text, f"An error occurred while processing your input: {str(e)}"]) | |
yield history | |
return | |
messages.append({"role": "user", "content": content}) | |
# Update the history with the new user message (with empty assistant response) | |
history.append([user_text, ""]) | |
yield history | |
try: | |
stream = client.chat.completions.create( | |
model="meta-llama/Llama-Vision-Free", | |
messages=messages, | |
max_tokens=max_new_tokens, | |
temperature=temperature, | |
stream=True, | |
) | |
response = "" | |
for chunk in stream: | |
response += chunk.choices[0].delta.content or "" | |
history[-1][1] = response | |
yield history | |
if not response: | |
history[-1][1] = "No response generated. Please try again." | |
yield history | |
except Exception as e: | |
if "Request Entity Too Large" in str(e): | |
history[-1][1] = "The image is too large. Please try with a smaller image or compress the existing one." | |
else: | |
history[-1][1] = f"An error occurred: {str(e)}" | |
yield history | |
with gr.Blocks() as demo: | |
gr.Markdown("# Meta Llama-3.2-11B-Vision-Instruct (FREE)") | |
gr.Markdown("Try the new Llama 3.2 11B Vision API by Meta for free through Together AI. Upload an image, and start chatting about it. Just paste in your Together AI API key and get started!") | |
with gr.Row(): | |
together_api_key = gr.Textbox( | |
label="Together API Key", | |
placeholder="Enter your TOGETHER_API_KEY here", | |
type="password" | |
) | |
with gr.Row(): | |
max_new_tokens = gr.Slider( | |
minimum=10, | |
maximum=500, | |
value=250, | |
step=10, | |
label="Maximum number of new tokens", | |
) | |
temperature = gr.Number( | |
value=0.7, | |
minimum=0, | |
maximum=1, | |
step=0.1, | |
label="Temperature" | |
) | |
chatbot = gr.Chatbot() | |
msg = gr.MultimodalTextbox(label="Enter text or upload an image") | |
clear = gr.Button("Clear") | |
msg.submit( | |
bot_streaming, | |
inputs=[msg, chatbot, together_api_key, max_new_tokens, temperature], | |
outputs=chatbot | |
) | |
clear.click(lambda: [], None, chatbot, queue=False) | |
if __name__ == "__main__": | |
demo.launch(debug=True) | |