import gradio as gr from PIL import Image import requests import os from together import Together import base64 import io # Initialize Together client client = None def initialize_client(api_key=None): global client if api_key: os.environ["TOGETHER_API_KEY"] = api_key if "TOGETHER_API_KEY" in os.environ: client = Together() else: raise ValueError("Please provide a Together API Key") def encode_image(image_path): try: with Image.open(image_path) as img: buffered = io.BytesIO() img.save(buffered, format="PNG") return base64.b64encode(buffered.getvalue()).decode('utf-8') except Exception as e: print(f"Error encoding image: {e}") raise e def bot_streaming(message, history, together_api_key, max_new_tokens=250, temperature=0.7): # Initialize history if it's None if history is None: history = [] # Initialize the Together client if not already done if client is None: try: initialize_client(together_api_key) except Exception as e: # Append error to history and yield history.append(["Error initializing client", str(e)]) yield history return prompt = "You are a helpful AI assistant. Analyze the image provided (if any) and respond to the user's query or comment." messages = [{"role": "system", "content": prompt}] # Build the conversation history for the API for idx, (user_msg, assistant_msg) in enumerate(history): # Append user messages messages.append({ "role": "user", "content": [ {"type": "text", "text": user_msg} ] }) # Append assistant messages messages.append({ "role": "assistant", "content": [ {"type": "text", "text": assistant_msg} ] }) # Prepare the current message content = [] user_text = "" try: if isinstance(message, dict): # Handle text input if 'text' in message and message['text']: user_text = message['text'] content.append({"type": "text", "text": user_text}) # Handle image input if 'files' in message and len(message['files']) > 0: file_info = message['files'][0] if isinstance(file_info, dict) and 'path' in file_info: image_path = file_info['path'] elif isinstance(file_info, str): image_path = file_info else: raise ValueError("Invalid file information provided.") # Encode the image to base64 image_base64 = encode_image(image_path) content.append({ "type": "image_url", "image_url": {"url": f"data:image/png;base64,{image_base64}"} }) user_text += "\n[User uploaded an image]" else: # If message is a string user_text = message content.append({"type": "text", "text": user_text}) except Exception as e: # If there's an error processing the input, append it to history and yield error_message = f"An error occurred while processing your input: {str(e)}" print(error_message) # Debug statement history.append([user_text or "[Invalid input]", error_message]) yield history return # Append the new user message with an empty assistant response history.append([user_text, ""]) yield history # Yield the updated history to show the user's message immediately # Append the current user message to the API messages messages.append({"role": "user", "content": content}) try: # Call the Together AI API with streaming stream = client.chat.completions.create( model="meta-llama/Llama-Vision-Free", messages=messages, max_tokens=max_new_tokens, temperature=temperature, stream=True, ) response = "" for chunk in stream: # Extract the content from the API response chunk_content = chunk.choices[0].delta.content or "" response += chunk_content # Update the last assistant message in history if history: history[-1][1] = response yield history else: # If history is somehow empty, append the response history.append(["", response]) yield history if not response: # If no response was generated, notify the user history[-1][1] = "No response generated. Please try again." yield history except Exception as e: # Handle exceptions from the API call error_message = "" if "Request Entity Too Large" in str(e): error_message = "The image is too large. Please try with a smaller image or compress the existing one." else: error_message = f"An error occurred: {str(e)}" print(error_message) # Debug statement if history: history[-1][1] = error_message else: history.append(["", error_message]) yield history with gr.Blocks() as demo: gr.Markdown("# Meta Llama-3.2-11B-Vision-Instruct (FREE)") gr.Markdown("Try the new Llama 3.2 11B Vision API by Meta for free through Together AI. Upload an image, and start chatting about it. Just paste in your Together AI API key and get started!") with gr.Row(): together_api_key = gr.Textbox( label="Together API Key", placeholder="Enter your TOGETHER_API_KEY here", type="password" ) with gr.Row(): max_new_tokens = gr.Slider( minimum=10, maximum=500, value=250, step=10, label="Maximum number of new tokens", ) temperature = gr.Number( value=0.7, minimum=0, maximum=1, step=0.1, label="Temperature" ) chatbot = gr.Chatbot() msg = gr.MultimodalTextbox(label="Enter text or upload an image") clear = gr.Button("Clear") msg.submit( bot_streaming, inputs=[msg, chatbot, together_api_key, max_new_tokens, temperature], outputs=chatbot ) clear.click(lambda: [], None, chatbot, queue=False) if __name__ == "__main__": demo.launch(debug=True)