import gradio as gr from PIL import Image import requests import os from together import Together import base64 import io # Initialize Together client client = None def initialize_client(api_key=None): global client if api_key: os.environ["TOGETHER_API_KEY"] = api_key if "TOGETHER_API_KEY" in os.environ: client = Together() else: raise ValueError("Please provide a Together API Key") def encode_image(image_path): with Image.open(image_path) as img: buffered = io.BytesIO() img.save(buffered, format="PNG") return base64.b64encode(buffered.getvalue()).decode('utf-8') def bot_streaming(message, history, together_api_key, max_new_tokens=250, temperature=0.7): if client is None: try: initialize_client(together_api_key) except Exception as e: yield f"Error initializing client: {str(e)}" return prompt = "You are a helpful AI assistant. Analyze the image provided (if any) and respond to the user's query or comment." messages = [{"role": "system", "content": prompt}] # Add history to messages for user_msg, assistant_msg in history: if isinstance(user_msg, tuple): # Handle image messages text = user_msg[1] if len(user_msg) > 1 else "" messages.append({"role": "user", "content": [ {"type": "text", "text": text}, {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{encode_image(user_msg[0])}"}} ]}) else: messages.append({"role": "user", "content": [{"type": "text", "text": user_msg}]}) messages.append({"role": "assistant", "content": [{"type": "text", "text": assistant_msg}]}) # Prepare the current message current_message = {"role": "user", "content": []} # Add text content if isinstance(message, dict) and message.get("text"): current_message["content"].append({"type": "text", "text": message["text"]}) elif isinstance(message, str): current_message["content"].append({"type": "text", "text": message}) # Add image content if present if isinstance(message, dict) and message.get("files") and len(message["files"]) > 0: image_path = message["files"][0]["path"] if isinstance(message["files"][0], dict) else message["files"][0] image_base64 = encode_image(image_path) current_message["content"].append({ "type": "image_url", "image_url": {"url": f"data:image/png;base64,{image_base64}"} }) messages.append(current_message) try: stream = client.chat.completions.create( model="meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo", messages=messages, max_tokens=max_new_tokens, temperature=temperature, stream=True, ) response = "" for chunk in stream: if chunk.choices and chunk.choices[0].delta and chunk.choices[0].delta.content is not None: response += chunk.choices[0].delta.content yield response if not response: yield "No response generated. Please try again." except Exception as e: if "Request Entity Too Large" in str(e): yield "The image is too large. Please try with a smaller image or compress the existing one." else: yield f"An error occurred: {str(e)}" # The rest of your Gradio interface code remains the same with gr.Blocks() as demo: gr.Markdown("# Meta Llama-3.2-11B-Vision-Instruct (FREE)") gr.Markdown("Try the new Llama 3.2 11B Vision API by Meta for free through Together AI. Upload an image, and start chatting about it. Just paste in your Together AI API key and get started!") with gr.Row(): together_api_key = gr.Textbox( label="Together API Key", placeholder="Enter your TOGETHER_API_KEY here", type="password" ) with gr.Row(): max_new_tokens = gr.Slider( minimum=10, maximum=500, value=250, step=10, label="Maximum number of new tokens", ) temperature = gr.Number( value=0.7, minimum=0, maximum=1, step=0.1, label="Temperature" ) chatbot = gr.Chatbot() msg = gr.MultimodalTextbox(label="Enter text or upload an image") clear = gr.Button("Clear") msg.submit(bot_streaming, [msg, chatbot, together_api_key, max_new_tokens, temperature], chatbot) clear.click(lambda: None, None, chatbot, queue=False) if __name__ == "__main__": demo.launch(debug=True)