toilaluan's picture
update
f52b9ad
raw
history blame
16 kB
import openai
import json
from pydantic import BaseModel, Field
from PIL import Image
from tqdm import tqdm
from transformers import AutoProcessor, AutoModelForCausalLM
import torch
import requests
import spaces
class PromptTuple(BaseModel):
class Tuple(BaseModel):
type: str = Field(
description="The type of the tuple. One of entity, attribute, relation",
example="attribute",
)
type_detail: str = Field(
description="""The detail of the type. For example:
- Entity: whole (entire entity, e.g., chair), part (part of entity, e.g., back of chair).
- Attribute: color (e.g., red book), type (e.g., aviator goggles), material (e.g., wooden chair), count (e.g., 5 geese), texture (e.g., rough surface), text rendering (e.g., letters “Macaroni”), shape (e.g., triangle block), size (e.g., large fence).
- Relation: spatial (e.g., A next to B); action (A kicks B).""",
example="color",
)
semantics: list = Field(
description="List of strings that explain the existence of type and type_detail in the tuple",
example=["motorcycle", "blue"],
)
tuples: list[Tuple] = Field(
description="List of tuples. Maximum 8 tuples.",
example=[
{
"type": "attribute",
"type_detail": "color",
"semantics": ["motorcycle", "blue"],
}
],
)
class DSGPromptProcessor:
def __init__(self, model_name="gpt-4o-mini"):
self.client = openai.OpenAI()
self.model_name = model_name
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.binary_vqa = AutoModelForCausalLM.from_pretrained("toilaluan/Florence-2-base-Yes-No-VQA", trust_remote_code=True).to(self.device, torch.float16)
self.binary_vqa_processor = processor = AutoProcessor.from_pretrained("toilaluan/Florence-2-base-Yes-No-VQA", trust_remote_code=True)
def generate_tuples(self, input_text: str) -> PromptTuple:
system_message = """
Given an image caption, extract the relevant entities, attributes, and relations present in the caption, and structure them into JSON format according to the following schema:
Each tuple contains the following information:
- Id: A unique identifier for the tuple.
- Type: The category of the tuple. Choose from "entity," "attribute," or "relation."
- Type Detail: Provide additional details based on the selected type:
- Entity: Specify whether it refers to the whole entity (e.g., "chair") or a part of the entity (e.g., "back of chair").
- Attribute: Specify the attribute type, such as "color", "type", "material", "count", "style", "texture", "text rendering", "shape" or "size".
- Relation: Specify the relation type, such as "spatial" (e.g., "A next to B") or "action" (e.g., "A kicks B").
- Semantics: A list of strings that represent the words or phrases from the caption that correspond to the tuple.
Example Input: "A blue motorcycle parked next to a red car."
Example output:
{
"tuples": [
{
"type": "entity",
"type_detail": "whole",
"semantics": ["motorcycle"]
},
{
"type": "attribute",
"type_detail": "color",
"semantics": ["motorcycle", "blue"]
},
{
"type": "entity",
"type_detail": "whole",
"semantics": ["car"]
},
{
"type": "attribute",
"type_detail": "color",
"semantics": ["car", "red"]
},
{
"type": "relation",
"type_detail": "spatial",
"semantics": ["motorcycle", "next to", "car"]
}
]
}
The final JSON should contain a list of tuples, each describing a unique entity, attribute, or relation from the image caption. Each JSON should contain a maximum of 8 tuples.
"""
messages = [
{
"role": "system",
"content": system_message,
},
{
"role": "user",
"content": input_text,
},
]
response = self.client.chat.completions.create(
model=self.model_name,
messages=messages,
response_format={"type": "json_object"},
max_tokens=512,
)
output = json.loads(response.choices[0].message.content)
return PromptTuple(**output), response.usage.total_tokens
def generate_dependencies(self, tuples: PromptTuple) -> dict:
DEPENDENCY_PROMPT = """
Given the following tuples extracted from an image caption, determine the dependencies between the entities, attributes, and relations in the JSON format.
Each tuple contains the following information:
- Id: A unique identifier for the tuple.
- Type: The category of the tuple. Choose from "entity," "attribute," or "relation."
- Type Detail: Provide additional details based on the selected type:
- Entity: Specify whether it refers to the whole entity (e.g., "chair") or a part of the entity (e.g., "back of chair").
- Attribute: Specify the attribute type, such as "color," "type," "material," "count," "texture," "text rendering," "shape," or "size."
- Relation: Specify the relation type, such as "spatial" (e.g., "A next to B") or "action" (e.g., "A kicks B").
- Semantics: A list of strings that represent the words or phrases from the caption that correspond to the tuple.
Output is a dictionary where the key is the id of the tuple and the value is a list of ids that the tuple depends on.
Example input:
[
{
"id": 1,
"type": "entity",
"type_detail": "whole",
"semantics": ["motorcycle"]
},
{
"id": 2,
"type": "attribute",
"type_detail": "color",
"semantics": ["motorcycle", "blue"]
},
{
"id": 3,
"type": "entity",
"type_detail": "whole",
"semantics": ["car"]
},
{
"id": 4,
"type": "attribute",
"type_detail": "color",
"semantics": ["car", "red"]
},
{
"id": 5,
"type": "relation",
"type_detail": "spatial",
"semantics": ["motorcycle", "next to", "car"]
}
]
Example output:
{
"1": [],
"2": [1],
"3": [],
"4": [3],
"5": [1, 3]
}
"""
input_obj = [{"id": i, **t.dict()} for i, t in enumerate(tuples.tuples)]
messages = [
{
"role": "system",
"content": DEPENDENCY_PROMPT,
},
{
"role": "user",
"content": json.dumps(input_obj),
},
]
response = self.client.chat.completions.create(
model=self.model_name,
messages=messages,
response_format={"type": "json_object"},
)
return (
json.loads(response.choices[0].message.content),
response.usage.total_tokens,
)
def generate_questions(
self, prompt: str, tuples: list[dict], dependencies: dict
) -> list[str]:
"""Generate validate question based on tuples and dependencies.
Args:
prompt (str): a prompt describe the image
tuples (list[dict]): each tuple is a unit of information extracted from the prompt
dependencies (dict): the dependencies between tuples
"""
system_message = """
Task: Given a prompt that describe the image and a list of tuples extracted from the prompt. Generate questions based on tuple in natural language as a list.
Each tuple contains the following information:
- Id: A unique identifier for the tuple.
- Type: The category of the tuple. Choose from "entity," "attribute," or "relation."
- Type Detail: Provide additional details based on the selected type:
- Entity: Specify whether it refers to the whole entity (e.g., "chair") or a part of the entity (e.g., "back of chair").
- Attribute: Specify the attribute type, such as "color", "type", "material", "count", "style", "texture", "text rendering", "shape" or "size".
- Relation: Specify the relation type, such as "spatial" (e.g., "A next to B") or "action" (e.g., "A kicks B").
- Semantics: A list of strings that represent the words or phrases from the caption that correspond to the tuple.
Output is a list of questions, each question corresponds to a tuple. The number of questions must be the same as the number of tuples.
Example input:
Prompt: "A traffic light and a signpost at a crossroads intersection near a waterway"
Tuples:
[
{
"id": 1,
"type": "entity",
"type_detail": "whole",
"semantics": ["traffic light"]
},
{
"id": 2,
"type": "entity",
"type_detail": "whole",
"semantics": ["signpost"]
},
{
"id": 3,
"type": "relation",
"type_detail": "spatial",
"semantics": ["traffic light", "at", "crossroads intersection"]
},
{
"id": 4,
"type": "relation",
"type_detail": "spatial",
"semantics": ["crossroads intersection", "near", "waterway"]
}
]
Dependencies:
{
"1": [],
"2": [],
"3": [1, 2],
"4": [3]
}
Example output is a json object. Each question ask about the existence of the tuple in the prompt and the answer should always be yes.
{
"1": "Is there a light?",
"2": "Is there a signpost?",
"3": "Is the traffic light at a crossroads intersection?",
"4": "Is the crossroads intersection near a waterway?"
}
"""
user_str = f"""
Prompt: {prompt}
Tuples: {tuples}
Dependencies: {dependencies}
"""
messages = [
{
"role": "system",
"content": system_message,
},
{
"role": "user",
"content": user_str,
},
]
response = self.client.chat.completions.create(
model=self.model_name,
messages=messages,
response_format={"type": "json_object"},
)
return (
json.loads(response.choices[0].message.content),
response.usage.total_tokens,
)
def find_layers(self, dep_dict):
layers = []
remaining_keys = set(dep_dict.keys())
while remaining_keys:
current_layer = []
for key in list(remaining_keys):
# If all dependencies of the key are in previous layers
if all(
str(dep) in [k for layer in layers for k in layer]
for dep in dep_dict[key]
):
current_layer.append(key)
# If no new layer is formed, break to avoid infinite loop
if not current_layer:
break
# Add the current layer to the list of layers
layers.append(current_layer)
# Remove the keys that are now layered
remaining_keys -= set(current_layer)
if len(layers) == 3:
break
ordered_indexes = [item for sublist in layers for item in sublist]
return ordered_indexes
def _create_graph_questions(self, questions: dict, dependencies: dict) -> set:
# create a question graph
layered_indexes = self.find_layers(dependencies)
print(layered_indexes)
sorted_questions = [questions[i] for i in layered_indexes]
return sorted_questions
def get_reward(
self,
questions: list[str],
dependencies: dict[list],
images: list,
mode="hybrid",
):
"""Get reward for the generated questions use structured question graph.
Args:
questions (list[str]): a list of questions generated based on the tuples
dependencies (dict[list]): the dependencies between tuples
images (list[str]): a list of image urls
"""
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.binary_vqa.to(self.device)
scores = {}
sorted_questions = self._create_graph_questions(questions, dependencies)
print(sorted_questions)
for i in range(len(images)):
scores[i] = [0] * len(sorted_questions)
def get_reward_for_a_question(
question: str,
question_dependencies: list[int],
image: Image.Image,
prev_scores: list[int],
) -> float:
if any([not (prev_scores[i] > 0.5) for i in question_dependencies]):
print(
f"Skipping question: {question}. It depends on {[sorted_questions[i] for i in range(len(question_dependencies))]} that was answered as No."
)
return 0
if not isinstance(image, Image.Image):
raise ValueError("Invalid image type")
inputs = self.binary_vqa_processor(text=question, images=image, return_tensors="pt").to(self.device, torch.float16)
decoder_input_ids = torch.LongTensor([[self.binary_vqa.language_model.config.pad_token_id, self.binary_vqa.language_model.config.decoder_start_token_id]]).to(self.device)
outputs = self.binary_vqa(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
decoder_input_ids=decoder_input_ids
)
logits = outputs.logits[:, -1]
score = logits[0].sigmoid().item()
print(f"The answer Yes has {score} probs")
return score
pbar = tqdm(
total=len(sorted_questions) * len(images),
desc=f"Calculating reward over {len(images)} images and {len(sorted_questions)} questions",
)
for i, question in enumerate(sorted_questions):
for j, image in enumerate(images):
scores[j][i] = get_reward_for_a_question(
question, dependencies[str(i)], image, scores[j]
)
pbar.update(1)
return scores, sorted_questions
if __name__ == "__main__":
processor = DSGPromptProcessor(model_name="mistralai/Mixtral-8x7B-Instruct-v0.1")
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
image = Image.open(requests.get(url, stream=True).raw)
input_text = "ghibli style image of a cat"
tuples, tokens = processor.generate_tuples(input_text)
print(tuples)
dependencies, tokens = processor.generate_dependencies(tuples)
print(dependencies)
questions, tokens = processor.generate_questions(
input_text, tuples.tuples, dependencies
)
print(questions)
reward = processor.get_reward(input_text, questions, dependencies, [image])
print(reward)