tomaseo2022 commited on
Commit
11076e1
·
1 Parent(s): 80e30a3

Delete util_calculate_psnr_ssim.py

Browse files
Files changed (1) hide show
  1. util_calculate_psnr_ssim.py +0 -346
util_calculate_psnr_ssim.py DELETED
@@ -1,346 +0,0 @@
1
- import cv2
2
- import numpy as np
3
- import torch
4
-
5
-
6
- def calculate_psnr(img1, img2, crop_border, input_order='HWC', test_y_channel=False):
7
- """Calculate PSNR (Peak Signal-to-Noise Ratio).
8
-
9
- Ref: https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio
10
-
11
- Args:
12
- img1 (ndarray): Images with range [0, 255].
13
- img2 (ndarray): Images with range [0, 255].
14
- crop_border (int): Cropped pixels in each edge of an image. These
15
- pixels are not involved in the PSNR calculation.
16
- input_order (str): Whether the input order is 'HWC' or 'CHW'.
17
- Default: 'HWC'.
18
- test_y_channel (bool): Test on Y channel of YCbCr. Default: False.
19
-
20
- Returns:
21
- float: psnr result.
22
- """
23
-
24
- assert img1.shape == img2.shape, (f'Image shapes are differnet: {img1.shape}, {img2.shape}.')
25
- if input_order not in ['HWC', 'CHW']:
26
- raise ValueError(f'Wrong input_order {input_order}. Supported input_orders are ' '"HWC" and "CHW"')
27
- img1 = reorder_image(img1, input_order=input_order)
28
- img2 = reorder_image(img2, input_order=input_order)
29
- img1 = img1.astype(np.float64)
30
- img2 = img2.astype(np.float64)
31
-
32
- if crop_border != 0:
33
- img1 = img1[crop_border:-crop_border, crop_border:-crop_border, ...]
34
- img2 = img2[crop_border:-crop_border, crop_border:-crop_border, ...]
35
-
36
- if test_y_channel:
37
- img1 = to_y_channel(img1)
38
- img2 = to_y_channel(img2)
39
-
40
- mse = np.mean((img1 - img2) ** 2)
41
- if mse == 0:
42
- return float('inf')
43
- return 20. * np.log10(255. / np.sqrt(mse))
44
-
45
-
46
- def _ssim(img1, img2):
47
- """Calculate SSIM (structural similarity) for one channel images.
48
-
49
- It is called by func:`calculate_ssim`.
50
-
51
- Args:
52
- img1 (ndarray): Images with range [0, 255] with order 'HWC'.
53
- img2 (ndarray): Images with range [0, 255] with order 'HWC'.
54
-
55
- Returns:
56
- float: ssim result.
57
- """
58
-
59
- C1 = (0.01 * 255) ** 2
60
- C2 = (0.03 * 255) ** 2
61
-
62
- img1 = img1.astype(np.float64)
63
- img2 = img2.astype(np.float64)
64
- kernel = cv2.getGaussianKernel(11, 1.5)
65
- window = np.outer(kernel, kernel.transpose())
66
-
67
- mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5]
68
- mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
69
- mu1_sq = mu1 ** 2
70
- mu2_sq = mu2 ** 2
71
- mu1_mu2 = mu1 * mu2
72
- sigma1_sq = cv2.filter2D(img1 ** 2, -1, window)[5:-5, 5:-5] - mu1_sq
73
- sigma2_sq = cv2.filter2D(img2 ** 2, -1, window)[5:-5, 5:-5] - mu2_sq
74
- sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
75
-
76
- ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2))
77
- return ssim_map.mean()
78
-
79
-
80
- def calculate_ssim(img1, img2, crop_border, input_order='HWC', test_y_channel=False):
81
- """Calculate SSIM (structural similarity).
82
-
83
- Ref:
84
- Image quality assessment: From error visibility to structural similarity
85
-
86
- The results are the same as that of the official released MATLAB code in
87
- https://ece.uwaterloo.ca/~z70wang/research/ssim/.
88
-
89
- For three-channel images, SSIM is calculated for each channel and then
90
- averaged.
91
-
92
- Args:
93
- img1 (ndarray): Images with range [0, 255].
94
- img2 (ndarray): Images with range [0, 255].
95
- crop_border (int): Cropped pixels in each edge of an image. These
96
- pixels are not involved in the SSIM calculation.
97
- input_order (str): Whether the input order is 'HWC' or 'CHW'.
98
- Default: 'HWC'.
99
- test_y_channel (bool): Test on Y channel of YCbCr. Default: False.
100
-
101
- Returns:
102
- float: ssim result.
103
- """
104
-
105
- assert img1.shape == img2.shape, (f'Image shapes are differnet: {img1.shape}, {img2.shape}.')
106
- if input_order not in ['HWC', 'CHW']:
107
- raise ValueError(f'Wrong input_order {input_order}. Supported input_orders are ' '"HWC" and "CHW"')
108
- img1 = reorder_image(img1, input_order=input_order)
109
- img2 = reorder_image(img2, input_order=input_order)
110
- img1 = img1.astype(np.float64)
111
- img2 = img2.astype(np.float64)
112
-
113
- if crop_border != 0:
114
- img1 = img1[crop_border:-crop_border, crop_border:-crop_border, ...]
115
- img2 = img2[crop_border:-crop_border, crop_border:-crop_border, ...]
116
-
117
- if test_y_channel:
118
- img1 = to_y_channel(img1)
119
- img2 = to_y_channel(img2)
120
-
121
- ssims = []
122
- for i in range(img1.shape[2]):
123
- ssims.append(_ssim(img1[..., i], img2[..., i]))
124
- return np.array(ssims).mean()
125
-
126
-
127
- def _blocking_effect_factor(im):
128
- block_size = 8
129
-
130
- block_horizontal_positions = torch.arange(7, im.shape[3] - 1, 8)
131
- block_vertical_positions = torch.arange(7, im.shape[2] - 1, 8)
132
-
133
- horizontal_block_difference = (
134
- (im[:, :, :, block_horizontal_positions] - im[:, :, :, block_horizontal_positions + 1]) ** 2).sum(
135
- 3).sum(2).sum(1)
136
- vertical_block_difference = (
137
- (im[:, :, block_vertical_positions, :] - im[:, :, block_vertical_positions + 1, :]) ** 2).sum(3).sum(
138
- 2).sum(1)
139
-
140
- nonblock_horizontal_positions = np.setdiff1d(torch.arange(0, im.shape[3] - 1), block_horizontal_positions)
141
- nonblock_vertical_positions = np.setdiff1d(torch.arange(0, im.shape[2] - 1), block_vertical_positions)
142
-
143
- horizontal_nonblock_difference = (
144
- (im[:, :, :, nonblock_horizontal_positions] - im[:, :, :, nonblock_horizontal_positions + 1]) ** 2).sum(
145
- 3).sum(2).sum(1)
146
- vertical_nonblock_difference = (
147
- (im[:, :, nonblock_vertical_positions, :] - im[:, :, nonblock_vertical_positions + 1, :]) ** 2).sum(
148
- 3).sum(2).sum(1)
149
-
150
- n_boundary_horiz = im.shape[2] * (im.shape[3] // block_size - 1)
151
- n_boundary_vert = im.shape[3] * (im.shape[2] // block_size - 1)
152
- boundary_difference = (horizontal_block_difference + vertical_block_difference) / (
153
- n_boundary_horiz + n_boundary_vert)
154
-
155
- n_nonboundary_horiz = im.shape[2] * (im.shape[3] - 1) - n_boundary_horiz
156
- n_nonboundary_vert = im.shape[3] * (im.shape[2] - 1) - n_boundary_vert
157
- nonboundary_difference = (horizontal_nonblock_difference + vertical_nonblock_difference) / (
158
- n_nonboundary_horiz + n_nonboundary_vert)
159
-
160
- scaler = np.log2(block_size) / np.log2(min([im.shape[2], im.shape[3]]))
161
- bef = scaler * (boundary_difference - nonboundary_difference)
162
-
163
- bef[boundary_difference <= nonboundary_difference] = 0
164
- return bef
165
-
166
-
167
- def calculate_psnrb(img1, img2, crop_border, input_order='HWC', test_y_channel=False):
168
- """Calculate PSNR-B (Peak Signal-to-Noise Ratio).
169
-
170
- Ref: Quality assessment of deblocked images, for JPEG image deblocking evaluation
171
- # https://gitlab.com/Queuecumber/quantization-guided-ac/-/blob/master/metrics/psnrb.py
172
-
173
- Args:
174
- img1 (ndarray): Images with range [0, 255].
175
- img2 (ndarray): Images with range [0, 255].
176
- crop_border (int): Cropped pixels in each edge of an image. These
177
- pixels are not involved in the PSNR calculation.
178
- input_order (str): Whether the input order is 'HWC' or 'CHW'.
179
- Default: 'HWC'.
180
- test_y_channel (bool): Test on Y channel of YCbCr. Default: False.
181
-
182
- Returns:
183
- float: psnr result.
184
- """
185
-
186
- assert img1.shape == img2.shape, (f'Image shapes are differnet: {img1.shape}, {img2.shape}.')
187
- if input_order not in ['HWC', 'CHW']:
188
- raise ValueError(f'Wrong input_order {input_order}. Supported input_orders are ' '"HWC" and "CHW"')
189
- img1 = reorder_image(img1, input_order=input_order)
190
- img2 = reorder_image(img2, input_order=input_order)
191
- img1 = img1.astype(np.float64)
192
- img2 = img2.astype(np.float64)
193
-
194
- if crop_border != 0:
195
- img1 = img1[crop_border:-crop_border, crop_border:-crop_border, ...]
196
- img2 = img2[crop_border:-crop_border, crop_border:-crop_border, ...]
197
-
198
- if test_y_channel:
199
- img1 = to_y_channel(img1)
200
- img2 = to_y_channel(img2)
201
-
202
- # follow https://gitlab.com/Queuecumber/quantization-guided-ac/-/blob/master/metrics/psnrb.py
203
- img1 = torch.from_numpy(img1).permute(2, 0, 1).unsqueeze(0) / 255.
204
- img2 = torch.from_numpy(img2).permute(2, 0, 1).unsqueeze(0) / 255.
205
-
206
- total = 0
207
- for c in range(img1.shape[1]):
208
- mse = torch.nn.functional.mse_loss(img1[:, c:c + 1, :, :], img2[:, c:c + 1, :, :], reduction='none')
209
- bef = _blocking_effect_factor(img1[:, c:c + 1, :, :])
210
-
211
- mse = mse.view(mse.shape[0], -1).mean(1)
212
- total += 10 * torch.log10(1 / (mse + bef))
213
-
214
- return float(total) / img1.shape[1]
215
-
216
-
217
- def reorder_image(img, input_order='HWC'):
218
- """Reorder images to 'HWC' order.
219
-
220
- If the input_order is (h, w), return (h, w, 1);
221
- If the input_order is (c, h, w), return (h, w, c);
222
- If the input_order is (h, w, c), return as it is.
223
-
224
- Args:
225
- img (ndarray): Input image.
226
- input_order (str): Whether the input order is 'HWC' or 'CHW'.
227
- If the input image shape is (h, w), input_order will not have
228
- effects. Default: 'HWC'.
229
-
230
- Returns:
231
- ndarray: reordered image.
232
- """
233
-
234
- if input_order not in ['HWC', 'CHW']:
235
- raise ValueError(f'Wrong input_order {input_order}. Supported input_orders are ' "'HWC' and 'CHW'")
236
- if len(img.shape) == 2:
237
- img = img[..., None]
238
- if input_order == 'CHW':
239
- img = img.transpose(1, 2, 0)
240
- return img
241
-
242
-
243
- def to_y_channel(img):
244
- """Change to Y channel of YCbCr.
245
-
246
- Args:
247
- img (ndarray): Images with range [0, 255].
248
-
249
- Returns:
250
- (ndarray): Images with range [0, 255] (float type) without round.
251
- """
252
- img = img.astype(np.float32) / 255.
253
- if img.ndim == 3 and img.shape[2] == 3:
254
- img = bgr2ycbcr(img, y_only=True)
255
- img = img[..., None]
256
- return img * 255.
257
-
258
-
259
- def _convert_input_type_range(img):
260
- """Convert the type and range of the input image.
261
-
262
- It converts the input image to np.float32 type and range of [0, 1].
263
- It is mainly used for pre-processing the input image in colorspace
264
- convertion functions such as rgb2ycbcr and ycbcr2rgb.
265
-
266
- Args:
267
- img (ndarray): The input image. It accepts:
268
- 1. np.uint8 type with range [0, 255];
269
- 2. np.float32 type with range [0, 1].
270
-
271
- Returns:
272
- (ndarray): The converted image with type of np.float32 and range of
273
- [0, 1].
274
- """
275
- img_type = img.dtype
276
- img = img.astype(np.float32)
277
- if img_type == np.float32:
278
- pass
279
- elif img_type == np.uint8:
280
- img /= 255.
281
- else:
282
- raise TypeError('The img type should be np.float32 or np.uint8, ' f'but got {img_type}')
283
- return img
284
-
285
-
286
- def _convert_output_type_range(img, dst_type):
287
- """Convert the type and range of the image according to dst_type.
288
-
289
- It converts the image to desired type and range. If `dst_type` is np.uint8,
290
- images will be converted to np.uint8 type with range [0, 255]. If
291
- `dst_type` is np.float32, it converts the image to np.float32 type with
292
- range [0, 1].
293
- It is mainly used for post-processing images in colorspace convertion
294
- functions such as rgb2ycbcr and ycbcr2rgb.
295
-
296
- Args:
297
- img (ndarray): The image to be converted with np.float32 type and
298
- range [0, 255].
299
- dst_type (np.uint8 | np.float32): If dst_type is np.uint8, it
300
- converts the image to np.uint8 type with range [0, 255]. If
301
- dst_type is np.float32, it converts the image to np.float32 type
302
- with range [0, 1].
303
-
304
- Returns:
305
- (ndarray): The converted image with desired type and range.
306
- """
307
- if dst_type not in (np.uint8, np.float32):
308
- raise TypeError('The dst_type should be np.float32 or np.uint8, ' f'but got {dst_type}')
309
- if dst_type == np.uint8:
310
- img = img.round()
311
- else:
312
- img /= 255.
313
- return img.astype(dst_type)
314
-
315
-
316
- def bgr2ycbcr(img, y_only=False):
317
- """Convert a BGR image to YCbCr image.
318
-
319
- The bgr version of rgb2ycbcr.
320
- It implements the ITU-R BT.601 conversion for standard-definition
321
- television. See more details in
322
- https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion.
323
-
324
- It differs from a similar function in cv2.cvtColor: `BGR <-> YCrCb`.
325
- In OpenCV, it implements a JPEG conversion. See more details in
326
- https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion.
327
-
328
- Args:
329
- img (ndarray): The input image. It accepts:
330
- 1. np.uint8 type with range [0, 255];
331
- 2. np.float32 type with range [0, 1].
332
- y_only (bool): Whether to only return Y channel. Default: False.
333
-
334
- Returns:
335
- ndarray: The converted YCbCr image. The output image has the same type
336
- and range as input image.
337
- """
338
- img_type = img.dtype
339
- img = _convert_input_type_range(img)
340
- if y_only:
341
- out_img = np.dot(img, [24.966, 128.553, 65.481]) + 16.0
342
- else:
343
- out_img = np.matmul(
344
- img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786], [65.481, -37.797, 112.0]]) + [16, 128, 128]
345
- out_img = _convert_output_type_range(out_img, img_type)
346
- return out_img