tomaseo2022 commited on
Commit
49569aa
1 Parent(s): fea5af8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -4
app.py CHANGED
@@ -1,4 +1,4 @@
1
- import os
2
  os.system("conda install pytorch torchvision -c pytorch")
3
  os.system("pip install torch")
4
  import gradio as gr
@@ -16,7 +16,12 @@ def inference(img):
16
  img = img.resize((basewidth,hsize), Image.ANTIALIAS)
17
  img.save("test/1.jpg", "JPEG")
18
  os.system('python main_test_swinir.py --task real_sr --model_path experiments/pretrained_models/003_realSR_BSRGAN_DFO_s64w8_SwinIR-M_x4_GAN.pth --folder_lq test --scale 4')
19
- return 'results/swinir_real_sr_x4/1_SwinIR.png'
 
 
 
 
 
20
 
21
  title = "SwinIR"
22
  description = "Gradio demo for SwinIR. SwinIR achieves state-of-the-art performance on six tasks: image super-resolution (including classical, lightweight and real-world image super-resolution), image denoising (including grayscale and color image denoising) and JPEG compression artifact reduction. See the paper and project page for detailed results below. Here, we provide a demo for real-world image SR.To use it, simply upload your image, or click one of the examples to load them."
@@ -26,9 +31,9 @@ article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2108.102
26
  gr.Interface(
27
  inference,
28
  [gr.inputs.Image(type="pil", label="Input")],
29
- gr.outputs.Image(type="file", label="Output"),
30
  title=title,
31
  description=description,
32
  article=article,
33
  enable_queue=True
34
- ).launch(debug=True)
 
1
+ import os
2
  os.system("conda install pytorch torchvision -c pytorch")
3
  os.system("pip install torch")
4
  import gradio as gr
 
16
  img = img.resize((basewidth,hsize), Image.ANTIALIAS)
17
  img.save("test/1.jpg", "JPEG")
18
  os.system('python main_test_swinir.py --task real_sr --model_path experiments/pretrained_models/003_realSR_BSRGAN_DFO_s64w8_SwinIR-M_x4_GAN.pth --folder_lq test --scale 4')
19
+
20
+ # Load the output image file as an Image object
21
+ output_img = Image.open('results/swinir_real_sr_x4/1_SwinIR.png')
22
+
23
+ # Return the output image
24
+ return output_img
25
 
26
  title = "SwinIR"
27
  description = "Gradio demo for SwinIR. SwinIR achieves state-of-the-art performance on six tasks: image super-resolution (including classical, lightweight and real-world image super-resolution), image denoising (including grayscale and color image denoising) and JPEG compression artifact reduction. See the paper and project page for detailed results below. Here, we provide a demo for real-world image SR.To use it, simply upload your image, or click one of the examples to load them."
 
31
  gr.Interface(
32
  inference,
33
  [gr.inputs.Image(type="pil", label="Input")],
34
+ gr.outputs.Image(type="pil", label="Output"),
35
  title=title,
36
  description=description,
37
  article=article,
38
  enable_queue=True
39
+ ).launch(debug=True)