File size: 944 Bytes
f69a830
 
 
 
08ba651
 
 
 
 
 
16d2bfe
 
 
 
 
 
09272be
16d2bfe
 
 
09272be
16d2bfe
 
 
09272be
 
1e5868e
 
 
 
 
09272be
 
5277bc9
09272be
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import os
os.system("pip install --upgrade httpx")
os.system("pip install --upgrade httpcore")
os.system("pip install --upgrade gradio")
import gradio as gr
import whisper

model = whisper.load_model("small")

def inference(audio):
    audio = whisper.load_audio(audio)
    audio = whisper.pad_or_trim(audio)
    
    mel = whisper.log_mel_spectrogram(audio).to(model.device)
    _, probs = model.detect_language(mel)
    
    options = whisper.DecodingOptions(fp16=False)
    result = whisper.decode(model, mel, options)
    
    print(result.text)
    return result.text

css = "footer {visibility: hidden}"

with gr.Blocks(css=css) as block:
    with gr.Row():
        with gr.Column():
            audio = gr.Audio(label="Input Audio", type="filepath")
        with gr.Column():
            text = gr.Textbox(show_label=False)
    btn = gr.Button("Transcribir")
    
    btn.click(inference, inputs=[audio], outputs=[text])

block.launch()