File size: 4,379 Bytes
5212a08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers.models.bert.modeling_bert import BertPreTrainedModel, BertModel
from gp import GPClassificationHead


class BertForUQSequenceClassification(BertPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels

        self.bert = BertModel(config)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = GPClassificationHead(
            hidden_size=config.hidden_size,
            num_classes=config.num_labels,
            num_inducing=512,
        )

        self.return_gp_cov = False

        self.init_weights()

    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
        output_attentions=None,
        output_hidden_states=None,
    ):
        r"""
            labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
                Labels for computing the sequence classification/regression loss.
                Indices should be in :obj:`[0, ..., config.num_labels - 1]`.
                If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
                If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).

        Returns:
            :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
            loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`label` is provided):
                Classification (or regression if config.num_labels==1) loss.
            logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.num_labels)`):
                Classification (or regression if config.num_labels==1) scores (before SoftMax).
            hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
                Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
                of shape :obj:`(batch_size, sequence_length, hidden_size)`.

                Hidden-states of the model at the output of each layer plus the initial embedding outputs.
            attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
                Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
                :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.

                Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
                heads.
        """

        outputs = self.bert(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
        )

        pooled_output = outputs[1]

        pooled_output = self.dropout(pooled_output)
        if self.return_gp_cov:
            logits, gp_cov = self.classifier(
                pooled_output,
                return_gp_cov=True,
                update_cov=False,
            )
        else:
            logits = self.classifier(pooled_output)

        outputs = (logits,) + outputs[
            2:
        ]  # add hidden states and attention if they are here

        if labels is not None:
            if self.num_labels == 1:
                #  We are doing regression
                loss_fct = MSELoss()
                loss = loss_fct(logits.view(-1), labels.view(-1))
            else:
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            outputs = (loss,) + outputs

        if self.return_gp_cov:
            return outputs, gp_cov
        else:
            return outputs  # (loss), logits, (hidden_states), (attentions)