AskAndAnswer / app.py
tomcat
Create app.py
d03165d
raw
history blame
1.16 kB
import gradio as gr
from transformers import pipeline
#pp = pipeline("question-answering",model="deepset/roberta-base-squad2")
pp = pipeline("question-answering",model="luhua/chinese_pretrain_mrc_roberta_wwm_ext_large")
def qa_fn(ask,ctxt):
ret = pp(context=ctxt, question=ask);
ret['entity']='Answer';
return {"text":ctxt,"entities":[ret]}, ret['answer'], ret['score']
#注意HighlightedText的用法。有两种不同用法:https://gradio.app/named_entity_recognition/
# 一种是list of dict ,一种是list of tuple. 详细用法参考https://gradio.app/named_entity_recognition/吧
samples= [["乔治的哥哥叫什么名字?","我是小猪佩奇,我是乔治的哥哥,我家住在北京"],["乔治住在哪里呀?","我是小猪佩奇,我是乔治的哥哥,我的家在北京颐和园"]];
demo = gr.Interface(qa_fn,
inputs=[gr.Textbox(label="Question",placeholder='请输入问题'), gr.Textbox(label="Context",lines=10,placeholder="请输入一段文本")],
outputs=[gr.HighlightedText(label='答案位置'),gr.Textbox(label="答案"),gr.Number(label="Score")],
examples=samples);
demo.launch()