import numpy as np import torch import transformers ce_loss_fn = torch.nn.CrossEntropyLoss(reduction="none") softmax_fn = torch.nn.Softmax(dim=-1) def perplexity(encoding: transformers.BatchEncoding, logits: torch.Tensor, median: bool = False, temperature: float = 1.0): shifted_logits = logits[..., :-1, :].contiguous() / temperature shifted_labels = encoding.input_ids[..., 1:].contiguous() shifted_attention_mask = encoding.attention_mask[..., 1:].contiguous() if median: ce_nan = (ce_loss_fn(shifted_logits.transpose(1, 2), shifted_labels). masked_fill(~shifted_attention_mask.bool(), float("nan"))) ppl = np.nanmedian(ce_nan.cpu().float().numpy(), 1) else: ppl = (ce_loss_fn(shifted_logits.transpose(1, 2), shifted_labels) * shifted_attention_mask).sum(1) / shifted_attention_mask.sum(1) ppl = ppl.to("cpu").float().numpy() return ppl def entropy(p_logits: torch.Tensor, q_logits: torch.Tensor, encoding: transformers.BatchEncoding, pad_token_id: int, median: bool = False, sample_p: bool = False, temperature: float = 1.0): vocab_size = p_logits.shape[-1] total_tokens_available = q_logits.shape[-2] p_scores, q_scores = p_logits / temperature, q_logits / temperature p_proba = softmax_fn(p_scores).view(-1, vocab_size) if sample_p: p_proba = torch.multinomial(p_proba.view(-1, vocab_size), replacement=True, num_samples=1).view(-1) q_scores = q_scores.view(-1, vocab_size) ce = ce_loss_fn(input=q_scores, target=p_proba).view(-1, total_tokens_available) padding_mask = (encoding.input_ids != pad_token_id).type(torch.uint8) if median: ce_nan = ce.masked_fill(~padding_mask.bool(), float("nan")) agg_ce = np.nanmedian(ce_nan.cpu().float().numpy(), 1) else: agg_ce = (((ce * padding_mask).sum(1) / padding_mask.sum(1)).to("cpu").float().numpy()) return agg_ce