Spaces:
Sleeping
Sleeping
File size: 40,091 Bytes
d6b2709 b5b3015 d6b2709 b5b3015 d6b2709 29d8de2 d6b2709 29d8de2 d6b2709 b5b3015 d6b2709 b5b3015 dafc0b4 b5b3015 d6b2709 fa826da d6b2709 b5b3015 6b83b21 811d741 d6b2709 a134a9d 29d8de2 b5b3015 d6b2709 b5b3015 811d741 d6b2709 811d741 d6b2709 b5b3015 d6b2709 a134a9d 29d8de2 b5b3015 d6b2709 b5b3015 0e6d24f b5b3015 7d29596 29d8de2 7d29596 29d8de2 7d29596 29d8de2 7d29596 b5b3015 29d8de2 b5b3015 7d29596 b5b3015 7d29596 b5b3015 29d8de2 4343565 b5b3015 7d29596 811d741 d8de20c 29d8de2 7d29596 3ab266f 7d29596 29d8de2 7d29596 29d8de2 7d29596 2c928af 7d29596 c958b82 7c3b96d 0e6d24f 7d29596 0e6d24f c958b82 0e6d24f f98590c 0e6d24f f98590c 7d29596 0e6d24f f98590c 0e6d24f f98590c 7d29596 0e6d24f b5b3015 0e6d24f 7d29596 f98590c 7d29596 f98590c 7d29596 0e6d24f 7d29596 0e6d24f b5b3015 4343565 b5b3015 7d29596 b5b3015 4343565 b5b3015 7d29596 b5b3015 7d29596 0e6d24f 29d8de2 667cc50 29d8de2 7d29596 29d8de2 7d29596 b5b3015 7d29596 b5b3015 7d29596 b5b3015 dafc0b4 4343565 b5b3015 0e6d24f 7d29596 b5b3015 7d29596 0e6d24f b5b3015 4343565 b5b3015 7d29596 b5b3015 0e6d24f 7d29596 0e6d24f 7d29596 a226244 7d29596 a226244 7d29596 a226244 7d29596 a226244 7d29596 a226244 b5b3015 0e6d24f b5b3015 29d8de2 b5b3015 4343565 b5b3015 99fe45a b5b3015 3ab266f 4343565 b5b3015 a134a9d b5b3015 d6b2709 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 |
# coding=utf-8
# Copyright 2023 Authors of "A Watermark for Large Language Models"
# available at https://arxiv.org/abs/2301.10226
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import argparse
from argparse import Namespace
from pprint import pprint
from functools import partial
import numpy # for gradio hot reload
import gradio as gr
import torch
from transformers import (AutoTokenizer,
AutoModelForSeq2SeqLM,
AutoModelForCausalLM,
LogitsProcessorList)
from watermark_processor import WatermarkLogitsProcessor, WatermarkDetector
def str2bool(v):
"""Util function for user friendly boolean flag args"""
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def parse_args():
"""Command line argument specification"""
parser = argparse.ArgumentParser(description="A minimum working example of applying the watermark to any LLM that supports the huggingface 🤗 `generate` API")
parser.add_argument(
"--run_gradio",
type=str2bool,
default=True,
help="Whether to launch as a gradio demo. Set to False if not installed and want to just run the stdout version.",
)
parser.add_argument(
"--demo_public",
type=str2bool,
default=False,
help="Whether to expose the gradio demo to the internet.",
)
parser.add_argument(
"--model_name_or_path",
type=str,
default="facebook/opt-6.7b",
help="Main model, path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--prompt_max_length",
type=int,
default=None,
help="Truncation length for prompt, overrides model config's max length field.",
)
parser.add_argument(
"--max_new_tokens",
type=int,
default=200,
help="Maximmum number of new tokens to generate.",
)
parser.add_argument(
"--generation_seed",
type=int,
default=123,
help="Seed for setting the torch global rng prior to generation.",
)
parser.add_argument(
"--use_sampling",
type=str2bool,
default=True,
help="Whether to generate using multinomial sampling.",
)
parser.add_argument(
"--sampling_temp",
type=float,
default=0.7,
help="Sampling temperature to use when generating using multinomial sampling.",
)
parser.add_argument(
"--n_beams",
type=int,
default=1,
help="Number of beams to use for beam search. 1 is normal greedy decoding",
)
parser.add_argument(
"--use_gpu",
type=str2bool,
default=True,
help="Whether to run inference and watermark hashing/seeding/permutation on gpu.",
)
parser.add_argument(
"--seeding_scheme",
type=str,
default="simple_1",
help="Seeding scheme to use to generate the greenlists at each generation and verification step.",
)
parser.add_argument(
"--gamma",
type=float,
default=0.25,
help="The fraction of the vocabulary to partition into the greenlist at each generation and verification step.",
)
parser.add_argument(
"--delta",
type=float,
default=2.0,
help="The amount/bias to add to each of the greenlist token logits before each token sampling step.",
)
parser.add_argument(
"--normalizers",
type=str,
default="",
help="Single or comma separated list of the preprocessors/normalizer names to use when performing watermark detection.",
)
parser.add_argument(
"--ignore_repeated_bigrams",
type=str2bool,
default=False,
help="Whether to use the detection method that only counts each unqiue bigram once as either a green or red hit.",
)
parser.add_argument(
"--detection_z_threshold",
type=float,
default=4.0,
help="The test statistic threshold for the detection hypothesis test.",
)
parser.add_argument(
"--select_green_tokens",
type=str2bool,
default=True,
help="How to treat the permuation when selecting the greenlist tokens at each step. Legacy is (False) to pick the complement/reds first.",
)
parser.add_argument(
"--skip_model_load",
type=str2bool,
default=False,
help="Skip the model loading to debug the interface.",
)
parser.add_argument(
"--seed_separately",
type=str2bool,
default=True,
help="Whether to call the torch seed function before both the unwatermarked and watermarked generate calls.",
)
parser.add_argument(
"--load_fp16",
type=str2bool,
default=False,
help="Whether to run model in float16 precsion.",
)
args = parser.parse_args()
return args
def load_model(args):
"""Load and return the model and tokenizer"""
args.is_seq2seq_model = any([(model_type in args.model_name_or_path) for model_type in ["t5","T0"]])
args.is_decoder_only_model = any([(model_type in args.model_name_or_path) for model_type in ["gpt","opt","bloom"]])
if args.is_seq2seq_model:
model = AutoModelForSeq2SeqLM.from_pretrained(args.model_name_or_path)
elif args.is_decoder_only_model:
if args.load_fp16:
model = AutoModelForCausalLM.from_pretrained(args.model_name_or_path,torch_dtype=torch.float16, device_map='auto')
else:
model = AutoModelForCausalLM.from_pretrained(args.model_name_or_path)
else:
raise ValueError(f"Unknown model type: {args.model_name_or_path}")
if args.use_gpu:
device = "cuda" if torch.cuda.is_available() else "cpu"
if args.load_fp16:
pass
else:
model = model.to(device)
else:
device = "cpu"
model.eval()
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path)
return model, tokenizer, device
def generate(prompt, args, model=None, device=None, tokenizer=None):
"""Instatiate the WatermarkLogitsProcessor according to the watermark parameters
and generate watermarked text by passing it to the generate method of the model
as a logits processor. """
print(f"Generating with {args}")
watermark_processor = WatermarkLogitsProcessor(vocab=list(tokenizer.get_vocab().values()),
gamma=args.gamma,
delta=args.delta,
seeding_scheme=args.seeding_scheme,
select_green_tokens=args.select_green_tokens)
gen_kwargs = dict(max_new_tokens=args.max_new_tokens)
if args.use_sampling:
gen_kwargs.update(dict(
do_sample=True,
top_k=0,
temperature=args.sampling_temp
))
else:
gen_kwargs.update(dict(
num_beams=args.n_beams
))
generate_without_watermark = partial(
model.generate,
**gen_kwargs
)
generate_with_watermark = partial(
model.generate,
logits_processor=LogitsProcessorList([watermark_processor]),
**gen_kwargs
)
if args.prompt_max_length:
pass
elif hasattr(model.config,"max_position_embedding"):
args.prompt_max_length = model.config.max_position_embeddings-args.max_new_tokens
else:
args.prompt_max_length = 2048-args.max_new_tokens
tokd_input = tokenizer(prompt, return_tensors="pt", add_special_tokens=True, truncation=True, max_length=args.prompt_max_length).to(device)
truncation_warning = True if tokd_input["input_ids"].shape[-1] == args.prompt_max_length else False
redecoded_input = tokenizer.batch_decode(tokd_input["input_ids"], skip_special_tokens=True)[0]
torch.manual_seed(args.generation_seed)
output_without_watermark = generate_without_watermark(**tokd_input)
# optional to seed before second generation, but will not be the same again generally, unless delta==0.0, no-op watermark
if args.seed_separately:
torch.manual_seed(args.generation_seed)
output_with_watermark = generate_with_watermark(**tokd_input)
if args.is_decoder_only_model:
# need to isolate the newly generated tokens
output_without_watermark = output_without_watermark[:,tokd_input["input_ids"].shape[-1]:]
output_with_watermark = output_with_watermark[:,tokd_input["input_ids"].shape[-1]:]
decoded_output_without_watermark = tokenizer.batch_decode(output_without_watermark, skip_special_tokens=True)[0]
decoded_output_with_watermark = tokenizer.batch_decode(output_with_watermark, skip_special_tokens=True)[0]
return (redecoded_input,
int(truncation_warning),
decoded_output_without_watermark,
decoded_output_with_watermark,
args)
# decoded_output_with_watermark)
def format_names(s):
"""Format names for the gradio demo interface"""
s=s.replace("num_tokens_scored","Tokens Counted (T)")
s=s.replace("num_green_tokens","# Tokens in Greenlist")
s=s.replace("green_fraction","Fraction of T in Greenlist")
s=s.replace("z_score","z-score")
s=s.replace("p_value","p value")
return s
def list_format_scores(score_dict, detection_threshold):
"""Format the detection metrics into a gradio dataframe input format"""
lst_2d = []
lst_2d.append(["z-score threshold", f"{detection_threshold}"])
for k,v in score_dict.items():
if k=='green_fraction':
lst_2d.append([format_names(k), f"{v:.1%}"])
elif k=='confidence':
lst_2d.append([format_names(k), f"{v:.3%}"])
elif isinstance(v, float):
lst_2d.append([format_names(k), f"{v:.3g}"])
elif isinstance(v, bool):
lst_2d.append([format_names(k), ("Watermarked" if v else "Human/Unwatermarked")])
else:
lst_2d.append([format_names(k), f"{v}"])
return lst_2d
def detect(input_text, args, device=None, tokenizer=None):
"""Instantiate the WatermarkDetection object and call detect on
the input text returning the scores and outcome of the test"""
watermark_detector = WatermarkDetector(vocab=list(tokenizer.get_vocab().values()),
gamma=args.gamma,
seeding_scheme=args.seeding_scheme,
device=device,
tokenizer=tokenizer,
z_threshold=args.detection_z_threshold,
normalizers=args.normalizers,
ignore_repeated_bigrams=args.ignore_repeated_bigrams,
select_green_tokens=args.select_green_tokens)
if len(input_text)-1 > watermark_detector.min_prefix_len:
score_dict = watermark_detector.detect(input_text)
# output = str_format_scores(score_dict, watermark_detector.z_threshold)
output = list_format_scores(score_dict, watermark_detector.z_threshold)
else:
# output = (f"Error: string not long enough to compute watermark presence.")
output = [["Error","string too short to compute metrics"]]
output += [["",""] for _ in range(6)]
return output, args
def run_gradio(args, model=None, device=None, tokenizer=None):
"""Define and launch the gradio demo interface"""
generate_partial = partial(generate, model=model, device=device, tokenizer=tokenizer)
detect_partial = partial(detect, device=device, tokenizer=tokenizer)
with gr.Blocks() as demo:
# Top section, greeting and instructions
gr.Markdown("## 💧 [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226) 🔍")
with gr.Row():
with gr.Column():
gr.Markdown("[jwkirchenbauer/lm-watermarking![](https://badgen.net/badge/icon/GitHub?icon=github&label)](https://github.com/jwkirchenbauer/lm-watermarking)")
with gr.Column():
gr.Markdown("![visitor badge](https://visitor-badge.glitch.me/badge?page_id=tomg-group-umd_lm-watermarking)")
with gr.Accordion("Understanding the output metrics",open=False):
gr.Markdown(
"""
- `z-score threshold` : The cuttoff for the hypothesis test
- `Tokens Counted (T)` : The number of tokens in the output that were counted by the detection algorithm.
The first token is ommitted in the simple, single token seeding scheme since there is no way to generate
a greenlist for it as it has no prefix token(s). Under the "Ignore Bigram Repeats" detection algorithm,
described in the bottom panel, this can be much less than the total number of tokens generated if there is a lot of repetition.
- `# Tokens in Greenlist` : The number of tokens that were observed to fall in their respective greenlist
- `Fraction of T in Greenlist` : The `# Tokens in Greenlist` / `T`. This is expected to be approximately `gamma` for human/unwatermarked text.
- `z-score` : The test statistic for the detection hypothesis test. If larger than the `z-score threshold`
we "reject the null hypothesis" that the text is human/unwatermarked, and conclude it is watermarked
- `p value` : The likelihood of observing the computed `z-score` under the null hypothesis. This is the likelihood of
observing the `Fraction of T in Greenlist` given that the text was generated without knowledge of the watermark procedure/greenlists.
If this is extremely _small_ we are confident that this many green tokens was not chosen by random chance.
- `prediction` : The outcome of the hypothesis test - whether the observed `z-score` was higher than the `z-score threshold`
- `confidence` : If we reject the null hypothesis, and the `prediction` is "Watermarked", then we report 1-`p value` to represent
the confidence of the detection based on the unlikeliness of this `z-score` observation.
"""
)
with gr.Accordion("A note on model capability",open=True):
gr.Markdown(
"""
The models that can be used in this demo are limited to those that are both open source and that fit on a single commodity GPU.
In particular, there aren't many models above a few billion parameters and almost none trained using both Instruction-finetuning an/or RLHF.
Therefore, in both it's un-watermarked (normal) and watermarked states, the model is not generally able to respond well to the kinds of prompts that a 100B+ Instruction and RLHF tuned model such as ChatGPT, Claude, or Bard is.
We suggest you try prompts that give the model a few sentences and then allow it to 'continue' the prompt, as these weaker models are more capable in this simpler language modeling setting.
Some examples include the opening paragraph of a wikipedia article, or the first few sentences of a story.
Longer prompts and stopping mid sentence often helps encourage more fluent, longer genrations.
"""
)
gr.Markdown(f"Language model: {args.model_name_or_path} {'(float16 mode)' if args.load_fp16 else ''}")
# Construct state for parameters, define updates and toggles
default_prompt = args.__dict__.pop("default_prompt")
session_args = gr.State(value=args)
with gr.Tab("Generate and Detect"):
with gr.Row():
prompt = gr.Textbox(label=f"Prompt", interactive=True,lines=10,max_lines=10, value=default_prompt)
with gr.Row():
generate_btn = gr.Button("Generate")
with gr.Row():
with gr.Column(scale=2):
output_without_watermark = gr.Textbox(label="Output Without Watermark", interactive=False,lines=14,max_lines=14)
with gr.Column(scale=1):
# without_watermark_detection_result = gr.Textbox(label="Detection Result", interactive=False,lines=14,max_lines=14)
without_watermark_detection_result = gr.Dataframe(headers=["Metric", "Value"], interactive=False,row_count=7,col_count=2)
with gr.Row():
with gr.Column(scale=2):
output_with_watermark = gr.Textbox(label="Output With Watermark", interactive=False,lines=14,max_lines=14)
with gr.Column(scale=1):
# with_watermark_detection_result = gr.Textbox(label="Detection Result", interactive=False,lines=14,max_lines=14)
with_watermark_detection_result = gr.Dataframe(headers=["Metric", "Value"],interactive=False,row_count=7,col_count=2)
redecoded_input = gr.Textbox(visible=False)
truncation_warning = gr.Number(visible=False)
def truncate_prompt(redecoded_input, truncation_warning, orig_prompt, args):
if truncation_warning:
return redecoded_input + f"\n\n[Prompt was truncated before generation due to length...]", args
else:
return orig_prompt, args
with gr.Tab("Detector Only"):
with gr.Row():
with gr.Column(scale=2):
detection_input = gr.Textbox(label="Text to Analyze", interactive=True,lines=14,max_lines=14)
with gr.Column(scale=1):
# detection_result = gr.Textbox(label="Detection Result", interactive=False,lines=14,max_lines=14)
detection_result = gr.Dataframe(headers=["Metric", "Value"], interactive=False,row_count=7,col_count=2)
with gr.Row():
detect_btn = gr.Button("Detect")
# Parameter selection group
with gr.Accordion("Advanced Settings",open=False):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown(f"#### Generation Parameters")
with gr.Row():
decoding = gr.Radio(label="Decoding Method",choices=["multinomial", "greedy"], value=("multinomial" if args.use_sampling else "greedy"))
with gr.Row():
sampling_temp = gr.Slider(label="Sampling Temperature", minimum=0.1, maximum=1.0, step=0.1, value=args.sampling_temp, visible=True)
with gr.Row():
generation_seed = gr.Number(label="Generation Seed",value=args.generation_seed, interactive=True)
with gr.Row():
n_beams = gr.Dropdown(label="Number of Beams",choices=list(range(1,11,1)), value=args.n_beams, visible=(not args.use_sampling))
with gr.Row():
max_new_tokens = gr.Slider(label="Max Generated Tokens", minimum=10, maximum=1000, step=10, value=args.max_new_tokens)
with gr.Column(scale=1):
gr.Markdown(f"#### Watermark Parameters")
with gr.Row():
gamma = gr.Slider(label="gamma",minimum=0.1, maximum=0.9, step=0.05, value=args.gamma)
with gr.Row():
delta = gr.Slider(label="delta",minimum=0.0, maximum=10.0, step=0.1, value=args.delta)
gr.Markdown(f"#### Detector Parameters")
with gr.Row():
detection_z_threshold = gr.Slider(label="z-score threshold",minimum=0.0, maximum=10.0, step=0.1, value=args.detection_z_threshold)
with gr.Row():
ignore_repeated_bigrams = gr.Checkbox(label="Ignore Bigram Repeats")
with gr.Row():
normalizers = gr.CheckboxGroup(label="Normalizations", choices=["unicode", "homoglyphs", "truecase"], value=args.normalizers)
# with gr.Accordion("Actual submitted parameters:",open=False):
with gr.Row():
gr.Markdown(f"_Note: sliders don't always update perfectly. Clicking on the bar or using the number window to the right can help. Window below shows the current settings._")
with gr.Row():
current_parameters = gr.Textbox(label="Current Parameters", value=args)
with gr.Accordion("Legacy Settings",open=False):
with gr.Row():
with gr.Column(scale=1):
seed_separately = gr.Checkbox(label="Seed both generations separately", value=args.seed_separately)
with gr.Column(scale=1):
select_green_tokens = gr.Checkbox(label="Select 'greenlist' from partition", value=args.select_green_tokens)
with gr.Accordion("Understanding the settings",open=False):
gr.Markdown(
"""
#### Generation Parameters:
- Decoding Method : We can generate tokens from the model using either multinomial sampling or we can generate using greedy decoding.
- Sampling Temperature : If using multinomial sampling we can set the temperature of the sampling distribution.
0.0 is equivalent to greedy decoding, and 1.0 is the maximum amount of variability/entropy in the next token distribution.
0.7 strikes a nice balance between faithfulness to the model's estimate of top candidates while adding variety. Does not apply for greedy decoding.
- Generation Seed : The integer to pass to the torch random number generator before running generation. Makes the multinomial sampling strategy
outputs reproducible. Does not apply for greedy decoding.
- Number of Beams : When using greedy decoding, we can also set the number of beams to > 1 to enable beam search.
This is not implemented/excluded from paper for multinomial sampling but may be added in future.
- Max Generated Tokens : The `max_new_tokens` parameter passed to the generation method to stop the output at a certain number of new tokens.
Note that the model is free to generate fewer tokens depending on the prompt.
Implicitly this sets the maximum number of prompt tokens possible as the model's maximum input length minus `max_new_tokens`,
and inputs will be truncated accordingly.
#### Watermark Parameters:
- gamma : The fraction of the vocabulary to be partitioned into the greenlist at each generation step.
Smaller gamma values create a stronger watermark by enabling the watermarked model to achieve
a greater differentiation from human/unwatermarked text because it is preferentially sampling
from a smaller green set making those tokens less likely to occur by chance.
- delta : The amount of positive bias to add to the logits of every token in the greenlist
at each generation step before sampling/choosing the next token. Higher delta values
mean that the greenlist tokens are more heavily preferred by the watermarked model
and as the bias becomes very large the watermark transitions from "soft" to "hard".
For a hard watermark, nearly all tokens are green, but this can have a detrimental effect on
generation quality, especially when there is not a lot of flexibility in the distribution.
#### Detector Parameters:
- z-score threshold : the z-score cuttoff for the hypothesis test. Higher thresholds (such as 4.0) make
_false positives_ (predicting that human/unwatermarked text is watermarked) very unlikely
as a genuine human text with a significant number of tokens will almost never achieve
that high of a z-score. Lower thresholds will capture more _true positives_ as some watermarked
texts will contain less green tokens and achive a lower z-score, but still pass the lower bar and
be flagged as "watermarked". However, a lowere threshold will increase the chance that human text
that contains a slightly higher than average number of green tokens is erroneously flagged.
4.0-5.0 offers extremely low false positive rates while still accurately catching most watermarked text.
- Ignore Bigram Repeats : This alternate detection algorithm only considers the unique bigrams in the text during detection,
computing the greenlists based on the first in each pair and checking whether the second falls within the list.
This means that `T` is now the unique number of bigrams in the text, which becomes less than the total
number of tokens generated if the text contains a lot of repetition. See the paper for a more detailed discussion.
- Normalizations : we implement a few basic normaliations to defend against various adversarial perturbations of the
text analyzed during detection. Currently we support converting all chracters to unicode,
replacing homoglyphs with a canonical form, and standardizing the capitalization.
See the paper for a detailed discussion of input normalization.
"""
)
gr.HTML("""
<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.
Follow the github link at the top and host the demo on your own GPU hardware to test out larger models.
<br/>
<a href="https://huggingface.co/spaces/tomg-group-umd/lm-watermarking?duplicate=true">
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
<p/>
""")
# Register main generation tab click, outputing generations as well as a the encoded+redecoded+potentially truncated prompt and flag
generate_btn.click(fn=generate_partial, inputs=[prompt,session_args], outputs=[redecoded_input, truncation_warning, output_without_watermark, output_with_watermark,session_args])
# Show truncated version of prompt if truncation occurred
redecoded_input.change(fn=truncate_prompt, inputs=[redecoded_input,truncation_warning,prompt,session_args], outputs=[prompt,session_args])
# Call detection when the outputs (of the generate function) are updated
output_without_watermark.change(fn=detect_partial, inputs=[output_without_watermark,session_args], outputs=[without_watermark_detection_result,session_args])
output_with_watermark.change(fn=detect_partial, inputs=[output_with_watermark,session_args], outputs=[with_watermark_detection_result,session_args])
# Register main detection tab click
detect_btn.click(fn=detect_partial, inputs=[detection_input,session_args], outputs=[detection_result, session_args])
# State management logic
# update callbacks that change the state dict
def update_sampling_temp(session_state, value): session_state.sampling_temp = float(value); return session_state
def update_generation_seed(session_state, value): session_state.generation_seed = int(value); return session_state
def update_gamma(session_state, value): session_state.gamma = float(value); return session_state
def update_delta(session_state, value): session_state.delta = float(value); return session_state
def update_detection_z_threshold(session_state, value): session_state.detection_z_threshold = float(value); return session_state
def update_decoding(session_state, value):
if value == "multinomial":
session_state.use_sampling = True
elif value == "greedy":
session_state.use_sampling = False
return session_state
def toggle_sampling_vis(value):
if value == "multinomial":
return gr.update(visible=True)
elif value == "greedy":
return gr.update(visible=False)
def toggle_sampling_vis_inv(value):
if value == "multinomial":
return gr.update(visible=False)
elif value == "greedy":
return gr.update(visible=True)
def update_n_beams(session_state, value): session_state.n_beams = value; return session_state
def update_max_new_tokens(session_state, value): session_state.max_new_tokens = int(value); return session_state
def update_ignore_repeated_bigrams(session_state, value): session_state.ignore_repeated_bigrams = value; return session_state
def update_normalizers(session_state, value): session_state.normalizers = value; return session_state
def update_seed_separately(session_state, value): session_state.seed_separately = value; return session_state
def update_select_green_tokens(session_state, value): session_state.select_green_tokens = value; return session_state
# registering callbacks for toggling the visibilty of certain parameters
decoding.change(toggle_sampling_vis,inputs=[decoding], outputs=[sampling_temp])
decoding.change(toggle_sampling_vis,inputs=[decoding], outputs=[generation_seed])
decoding.change(toggle_sampling_vis_inv,inputs=[decoding], outputs=[n_beams])
# registering all state update callbacks
decoding.change(update_decoding,inputs=[session_args, decoding], outputs=[session_args])
sampling_temp.change(update_sampling_temp,inputs=[session_args, sampling_temp], outputs=[session_args])
generation_seed.change(update_generation_seed,inputs=[session_args, generation_seed], outputs=[session_args])
n_beams.change(update_n_beams,inputs=[session_args, n_beams], outputs=[session_args])
max_new_tokens.change(update_max_new_tokens,inputs=[session_args, max_new_tokens], outputs=[session_args])
gamma.change(update_gamma,inputs=[session_args, gamma], outputs=[session_args])
delta.change(update_delta,inputs=[session_args, delta], outputs=[session_args])
detection_z_threshold.change(update_detection_z_threshold,inputs=[session_args, detection_z_threshold], outputs=[session_args])
ignore_repeated_bigrams.change(update_ignore_repeated_bigrams,inputs=[session_args, ignore_repeated_bigrams], outputs=[session_args])
normalizers.change(update_normalizers,inputs=[session_args, normalizers], outputs=[session_args])
seed_separately.change(update_seed_separately,inputs=[session_args, seed_separately], outputs=[session_args])
select_green_tokens.change(update_select_green_tokens,inputs=[session_args, select_green_tokens], outputs=[session_args])
# register additional callback on button clicks that updates the shown parameters window
generate_btn.click(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
detect_btn.click(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
# When the parameters change, display the update and fire detection, since some detection params dont change the model output.
gamma.change(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
gamma.change(fn=detect_partial, inputs=[output_without_watermark,session_args], outputs=[without_watermark_detection_result,session_args])
gamma.change(fn=detect_partial, inputs=[output_with_watermark,session_args], outputs=[with_watermark_detection_result,session_args])
gamma.change(fn=detect_partial, inputs=[detection_input,session_args], outputs=[detection_result,session_args])
detection_z_threshold.change(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
detection_z_threshold.change(fn=detect_partial, inputs=[output_without_watermark,session_args], outputs=[without_watermark_detection_result,session_args])
detection_z_threshold.change(fn=detect_partial, inputs=[output_with_watermark,session_args], outputs=[with_watermark_detection_result,session_args])
detection_z_threshold.change(fn=detect_partial, inputs=[detection_input,session_args], outputs=[detection_result,session_args])
ignore_repeated_bigrams.change(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
ignore_repeated_bigrams.change(fn=detect_partial, inputs=[output_without_watermark,session_args], outputs=[without_watermark_detection_result,session_args])
ignore_repeated_bigrams.change(fn=detect_partial, inputs=[output_with_watermark,session_args], outputs=[with_watermark_detection_result,session_args])
ignore_repeated_bigrams.change(fn=detect_partial, inputs=[detection_input,session_args], outputs=[detection_result,session_args])
normalizers.change(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
normalizers.change(fn=detect_partial, inputs=[output_without_watermark,session_args], outputs=[without_watermark_detection_result,session_args])
normalizers.change(fn=detect_partial, inputs=[output_with_watermark,session_args], outputs=[with_watermark_detection_result,session_args])
normalizers.change(fn=detect_partial, inputs=[detection_input,session_args], outputs=[detection_result,session_args])
select_green_tokens.change(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
select_green_tokens.change(fn=detect_partial, inputs=[output_without_watermark,session_args], outputs=[without_watermark_detection_result,session_args])
select_green_tokens.change(fn=detect_partial, inputs=[output_with_watermark,session_args], outputs=[with_watermark_detection_result,session_args])
select_green_tokens.change(fn=detect_partial, inputs=[detection_input,session_args], outputs=[detection_result,session_args])
demo.queue(concurrency_count=3)
if args.demo_public:
demo.launch(share=True) # exposes app to the internet via randomly generated link
else:
demo.launch()
def main(args):
"""Run a command line version of the generation and detection operations
and optionally launch and serve the gradio demo"""
# Initial arg processing and log
args.normalizers = (args.normalizers.split(",") if args.normalizers else [])
print(args)
if not args.skip_model_load:
model, tokenizer, device = load_model(args)
else:
model, tokenizer, device = None, None, None
# Generate and detect, report to stdout
if not args.skip_model_load:
input_text = (
"The diamondback terrapin or simply terrapin (Malaclemys terrapin) is a "
"species of turtle native to the brackish coastal tidal marshes of the "
"Northeastern and southern United States, and in Bermuda.[6] It belongs "
"to the monotypic genus Malaclemys. It has one of the largest ranges of "
"all turtles in North America, stretching as far south as the Florida Keys "
"and as far north as Cape Cod.[7] The name 'terrapin' is derived from the "
"Algonquian word torope.[8] It applies to Malaclemys terrapin in both "
"British English and American English. The name originally was used by "
"early European settlers in North America to describe these brackish-water "
"turtles that inhabited neither freshwater habitats nor the sea. It retains "
"this primary meaning in American English.[8] In British English, however, "
"other semi-aquatic turtle species, such as the red-eared slider, might "
"also be called terrapins. The common name refers to the diamond pattern "
"on top of its shell (carapace), but the overall pattern and coloration "
"vary greatly. The shell is usually wider at the back than in the front, "
"and from above it appears wedge-shaped. The shell coloring can vary "
"from brown to grey, and its body color can be grey, brown, yellow, "
"or white. All have a unique pattern of wiggly, black markings or spots "
"on their body and head. The diamondback terrapin has large webbed "
"feet.[9] The species is"
)
args.default_prompt = input_text
term_width = 80
print("#"*term_width)
print("Prompt:")
print(input_text)
_, _, decoded_output_without_watermark, decoded_output_with_watermark, _ = generate(input_text,
args,
model=model,
device=device,
tokenizer=tokenizer)
without_watermark_detection_result = detect(decoded_output_without_watermark,
args,
device=device,
tokenizer=tokenizer)
with_watermark_detection_result = detect(decoded_output_with_watermark,
args,
device=device,
tokenizer=tokenizer)
print("#"*term_width)
print("Output without watermark:")
print(decoded_output_without_watermark)
print("-"*term_width)
print(f"Detection result @ {args.detection_z_threshold}:")
pprint(without_watermark_detection_result)
print("-"*term_width)
print("#"*term_width)
print("Output with watermark:")
print(decoded_output_with_watermark)
print("-"*term_width)
print(f"Detection result @ {args.detection_z_threshold}:")
pprint(with_watermark_detection_result)
print("-"*term_width)
# Launch the app to generate and detect interactively (implements the hf space demo)
if args.run_gradio:
run_gradio(args, model=model, tokenizer=tokenizer, device=device)
return
if __name__ == "__main__":
args = parse_args()
print(args)
main(args) |