Spaces:
Sleeping
Sleeping
File size: 53,893 Bytes
d6b2709 b5b3015 d6b2709 e2e6e76 d6b2709 e2e6e76 507fd5a e2e6e76 3682749 507fd5a d6b2709 29d8de2 d6b2709 29d8de2 d6b2709 b5b3015 d6b2709 b5b3015 dafc0b4 b5b3015 d6b2709 fa826da d6b2709 b5b3015 6b83b21 811d741 ea229c1 d6b2709 a134a9d 29d8de2 ea229c1 b5b3015 d6b2709 b5b3015 811d741 ea229c1 811d741 d6b2709 ea229c1 811d741 d6b2709 b5b3015 d6b2709 507fd5a 5b3e92c 507fd5a 5b3e92c 507fd5a 5b3e92c e2e6e76 5b3e92c e2e6e76 5b3e92c e2e6e76 5b3e92c e2e6e76 507fd5a e2e6e76 507fd5a e2e6e76 d6b2709 507fd5a e2e6e76 507fd5a e2e6e76 507fd5a b5b3015 e2e6e76 b5b3015 e2e6e76 b5b3015 e2e6e76 0e6d24f e2e6e76 b5b3015 e2e6e76 b5b3015 e2e6e76 b5b3015 e2e6e76 507fd5a b5b3015 7d29596 29d8de2 7d29596 cee0410 7d29596 29d8de2 7d29596 29d8de2 7d29596 8bb4ab4 7d29596 e2e6e76 29d8de2 e2e6e76 507fd5a b5b3015 4f1c9f2 507fd5a e2e6e76 507fd5a b5b3015 e2e6e76 507fd5a 7d29596 ea229c1 4f1c9f2 ea229c1 e2e6e76 b5b3015 29d8de2 e2e6e76 507fd5a b5b3015 e2e6e76 b5b3015 aed6478 8c252e3 aed6478 8c252e3 aed6478 8c252e3 aed6478 8c252e3 aed6478 507fd5a ea229c1 507fd5a 7d29596 c958b82 7c3b96d 507fd5a 0e6d24f a7d76f1 ea229c1 a7d76f1 e2e6e76 a7d76f1 ea229c1 a7d76f1 0e6d24f c958b82 0e6d24f e2e6e76 0e6d24f 7d29596 0e6d24f e2e6e76 0e6d24f 7d29596 0e6d24f b5b3015 0e6d24f 7d29596 fa85da4 7d29596 0e6d24f 7d29596 0e6d24f b5b3015 507fd5a 4343565 b5b3015 7d29596 b5b3015 4343565 b5b3015 7d29596 b5b3015 7d29596 0e6d24f 29d8de2 a7d76f1 29d8de2 0a88363 29d8de2 0a88363 29d8de2 0a88363 29d8de2 0a88363 29d8de2 0a88363 29d8de2 0a88363 29d8de2 667cc50 0a88363 29d8de2 0a88363 29d8de2 0a88363 29d8de2 a7d76f1 7d29596 29d8de2 7d29596 b5b3015 e2e6e76 7d29596 fa85da4 7d29596 858fe91 507fd5a b5b3015 7d29596 b5b3015 507fd5a dafc0b4 4343565 b5b3015 0e6d24f e2e6e76 858fe91 507fd5a b5b3015 507fd5a 7d29596 0e6d24f b5b3015 4343565 b5b3015 7d29596 b5b3015 0e6d24f 7d29596 0e6d24f 5b3e92c 507fd5a 7d29596 fa85da4 7d29596 fa85da4 7d29596 fa85da4 7d29596 fa85da4 7d29596 fa85da4 b5b3015 ea229c1 b5b3015 29d8de2 b5b3015 4343565 a7d76f1 b5b3015 a7d76f1 99fe45a a7d76f1 b5b3015 a7d76f1 507fd5a a7d76f1 3ab266f 4343565 b5b3015 e2e6e76 a134a9d e2e6e76 a134a9d e2e6e76 b5b3015 d6b2709 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 |
# coding=utf-8
# Copyright 2023 Authors of "A Watermark for Large Language Models"
# available at https://arxiv.org/abs/2301.10226
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import argparse
from pprint import pprint
from functools import partial
import numpy # for gradio hot reload
import gradio as gr
import torch
from transformers import (AutoTokenizer,
AutoModelForSeq2SeqLM,
AutoModelForCausalLM,
LogitsProcessorList)
# from local_tokenizers.tokenization_llama import LLaMATokenizer
from transformers import GPT2TokenizerFast
OPT_TOKENIZER = GPT2TokenizerFast
from watermark_processor import WatermarkLogitsProcessor, WatermarkDetector
# ALPACA_MODEL_NAME = "alpaca"
# ALPACA_MODEL_TOKENIZER = LLaMATokenizer
# ALPACA_TOKENIZER_PATH = "/cmlscratch/jkirchen/llama"
# FIXME correct lengths for all models
API_MODEL_MAP = {
"google/flan-ul2" : {"max_length": 1000, "gamma": 0.5, "delta": 2.0},
"google/flan-t5-xxl" : {"max_length": 1000, "gamma": 0.5, "delta": 2.0},
"EleutherAI/gpt-neox-20b" : {"max_length": 1000, "gamma": 0.5, "delta": 2.0},
# "bigscience/bloom" : {"max_length": 1000, "gamma": 0.5, "delta": 2.0},
# "bigscience/bloomz" : {"max_length": 1000, "gamma": 0.5, "delta": 2.0},
}
def str2bool(v):
"""Util function for user friendly boolean flag args"""
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def parse_args():
"""Command line argument specification"""
parser = argparse.ArgumentParser(description="A minimum working example of applying the watermark to any LLM that supports the huggingface 🤗 `generate` API")
parser.add_argument(
"--run_gradio",
type=str2bool,
default=True,
help="Whether to launch as a gradio demo. Set to False if not installed and want to just run the stdout version.",
)
parser.add_argument(
"--demo_public",
type=str2bool,
default=False,
help="Whether to expose the gradio demo to the internet.",
)
parser.add_argument(
"--model_name_or_path",
type=str,
default="facebook/opt-6.7b",
help="Main model, path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--prompt_max_length",
type=int,
default=None,
help="Truncation length for prompt, overrides model config's max length field.",
)
parser.add_argument(
"--max_new_tokens",
type=int,
default=200,
help="Maximmum number of new tokens to generate.",
)
parser.add_argument(
"--generation_seed",
type=int,
default=123,
help="Seed for setting the torch global rng prior to generation.",
)
parser.add_argument(
"--use_sampling",
type=str2bool,
default=True,
help="Whether to generate using multinomial sampling.",
)
parser.add_argument(
"--sampling_temp",
type=float,
default=0.7,
help="Sampling temperature to use when generating using multinomial sampling.",
)
parser.add_argument(
"--n_beams",
type=int,
default=1,
help="Number of beams to use for beam search. 1 is normal greedy decoding",
)
parser.add_argument(
"--use_gpu",
type=str2bool,
default=True,
help="Whether to run inference and watermark hashing/seeding/permutation on gpu.",
)
parser.add_argument(
"--seeding_scheme",
type=str,
default="simple_1",
help="Seeding scheme to use to generate the greenlists at each generation and verification step.",
)
parser.add_argument(
"--gamma",
type=float,
default=0.25,
help="The fraction of the vocabulary to partition into the greenlist at each generation and verification step.",
)
parser.add_argument(
"--delta",
type=float,
default=2.0,
help="The amount/bias to add to each of the greenlist token logits before each token sampling step.",
)
parser.add_argument(
"--normalizers",
type=str,
default="",
help="Single or comma separated list of the preprocessors/normalizer names to use when performing watermark detection.",
)
parser.add_argument(
"--ignore_repeated_bigrams",
type=str2bool,
default=False,
help="Whether to use the detection method that only counts each unqiue bigram once as either a green or red hit.",
)
parser.add_argument(
"--detection_z_threshold",
type=float,
default=4.0,
help="The test statistic threshold for the detection hypothesis test.",
)
parser.add_argument(
"--select_green_tokens",
type=str2bool,
default=True,
help="How to treat the permuation when selecting the greenlist tokens at each step. Legacy is (False) to pick the complement/reds first.",
)
parser.add_argument(
"--skip_model_load",
type=str2bool,
default=False,
help="Skip the model loading to debug the interface.",
)
parser.add_argument(
"--seed_separately",
type=str2bool,
default=True,
help="Whether to call the torch seed function before both the unwatermarked and watermarked generate calls.",
)
parser.add_argument(
"--load_fp16",
type=str2bool,
default=False,
help="Whether to run model in float16 precsion.",
)
parser.add_argument(
"--load_bf16",
type=str2bool,
default=False,
help="Whether to run model in float16 precsion.",
)
args = parser.parse_args()
return args
def load_model(args):
"""Load and return the model and tokenizer"""
args.is_seq2seq_model = any([(model_type in args.model_name_or_path.lower()) for model_type in ["t5","T0"]])
args.is_decoder_only_model = any([(model_type in args.model_name_or_path.lower()) for model_type in ["gpt","opt","bloom","llama"]])
if args.is_seq2seq_model:
model = AutoModelForSeq2SeqLM.from_pretrained(args.model_name_or_path)
elif args.is_decoder_only_model:
if args.load_fp16:
model = AutoModelForCausalLM.from_pretrained(args.model_name_or_path,torch_dtype=torch.float16, device_map='auto')
elif args.load_bf16:
model = AutoModelForCausalLM.from_pretrained(args.model_name_or_path,torch_dtype=torch.bfloat16, device_map='auto')
else:
model = AutoModelForCausalLM.from_pretrained(args.model_name_or_path)
else:
raise ValueError(f"Unknown model type: {args.model_name_or_path}")
if args.use_gpu:
device = "cuda" if torch.cuda.is_available() else "cpu"
if args.load_fp16 or args.load_bf16:
pass
else:
model = model.to(device)
else:
device = "cpu"
model.eval()
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path)
return model, tokenizer, device
from text_generation import InferenceAPIClient
from requests.exceptions import ReadTimeout
def generate_with_api(prompt, args):
hf_api_key = os.environ.get("HF_API_KEY")
if hf_api_key is None:
raise ValueError("HF_API_KEY environment variable not set, cannot use HF API to generate text.")
client = InferenceAPIClient(args.model_name_or_path, token=hf_api_key, timeout=60)
assert args.n_beams == 1, "HF API models do not support beam search."
generation_params = {
"max_new_tokens": args.max_new_tokens,
"do_sample": args.use_sampling,
}
if args.use_sampling:
generation_params["temperature"] = args.sampling_temp
generation_params["seed"] = args.generation_seed
timeout_msg = "[Model API timeout error. Try reducing the max_new_tokens parameter or the prompt length.]"
try:
generation_params["watermark"] = False
without_watermark_iterator = client.generate_stream(prompt, **generation_params)
except ReadTimeout as e:
print(e)
without_watermark_iterator = (char for char in timeout_msg)
try:
generation_params["watermark"] = True
with_watermark_iterator = client.generate_stream(prompt, **generation_params)
except ReadTimeout as e:
print(e)
with_watermark_iterator = (char for char in timeout_msg)
all_without_words, all_with_words = "", ""
for without_word, with_word in zip(without_watermark_iterator, with_watermark_iterator):
all_without_words += without_word.token.text
all_with_words += with_word.token.text
yield all_without_words, all_with_words
def check_prompt(prompt, args, tokenizer, model=None, device=None):
# This applies to both the local and API model scenarios
if args.model_name_or_path in API_MODEL_MAP:
args.prompt_max_length = API_MODEL_MAP[args.model_name_or_path]["max_length"]
elif hasattr(model.config,"max_position_embedding"):
args.prompt_max_length = model.config.max_position_embeddings-args.max_new_tokens
else:
args.prompt_max_length = 2048-args.max_new_tokens
tokd_input = tokenizer(prompt, return_tensors="pt", add_special_tokens=True, truncation=True, max_length=args.prompt_max_length).to(device)
truncation_warning = True if tokd_input["input_ids"].shape[-1] == args.prompt_max_length else False
redecoded_input = tokenizer.batch_decode(tokd_input["input_ids"], skip_special_tokens=True)[0]
return (redecoded_input,
int(truncation_warning),
args)
def generate(prompt, args, tokenizer, model=None, device=None):
"""Instatiate the WatermarkLogitsProcessor according to the watermark parameters
and generate watermarked text by passing it to the generate method of the model
as a logits processor. """
print(f"Generating with {args}")
print(f"Prompt: {prompt}")
if args.model_name_or_path in API_MODEL_MAP:
api_outputs = generate_with_api(prompt, args)
yield from api_outputs
else:
tokd_input = tokenizer(prompt, return_tensors="pt", add_special_tokens=True, truncation=True, max_length=args.prompt_max_length).to(device)
watermark_processor = WatermarkLogitsProcessor(vocab=list(tokenizer.get_vocab().values()),
gamma=args.gamma,
delta=args.delta,
seeding_scheme=args.seeding_scheme,
select_green_tokens=args.select_green_tokens)
gen_kwargs = dict(max_new_tokens=args.max_new_tokens)
if args.use_sampling:
gen_kwargs.update(dict(
do_sample=True,
top_k=0,
temperature=args.sampling_temp
))
else:
gen_kwargs.update(dict(
num_beams=args.n_beams
))
generate_without_watermark = partial(
model.generate,
**gen_kwargs
)
generate_with_watermark = partial(
model.generate,
logits_processor=LogitsProcessorList([watermark_processor]),
**gen_kwargs
)
torch.manual_seed(args.generation_seed)
output_without_watermark = generate_without_watermark(**tokd_input)
# optional to seed before second generation, but will not be the same again generally, unless delta==0.0, no-op watermark
if args.seed_separately:
torch.manual_seed(args.generation_seed)
output_with_watermark = generate_with_watermark(**tokd_input)
if args.is_decoder_only_model:
# need to isolate the newly generated tokens
output_without_watermark = output_without_watermark[:,tokd_input["input_ids"].shape[-1]:]
output_with_watermark = output_with_watermark[:,tokd_input["input_ids"].shape[-1]:]
decoded_output_without_watermark = tokenizer.batch_decode(output_without_watermark, skip_special_tokens=True)[0]
decoded_output_with_watermark = tokenizer.batch_decode(output_with_watermark, skip_special_tokens=True)[0]
# mocking the API outputs in a whitespace split generator style
all_without_words, all_with_words = "", ""
for without_word, with_word in zip(decoded_output_without_watermark.split(), decoded_output_with_watermark.split()):
all_without_words += without_word + " "
all_with_words += with_word + " "
yield all_without_words, all_with_words
def format_names(s):
"""Format names for the gradio demo interface"""
s=s.replace("num_tokens_scored","Tokens Counted (T)")
s=s.replace("num_green_tokens","# Tokens in Greenlist")
s=s.replace("green_fraction","Fraction of T in Greenlist")
s=s.replace("z_score","z-score")
s=s.replace("p_value","p value")
s=s.replace("prediction","Prediction")
s=s.replace("confidence","Confidence")
return s
def list_format_scores(score_dict, detection_threshold):
"""Format the detection metrics into a gradio dataframe input format"""
lst_2d = []
for k,v in score_dict.items():
if k=='green_fraction':
lst_2d.append([format_names(k), f"{v:.1%}"])
elif k=='confidence':
lst_2d.append([format_names(k), f"{v:.3%}"])
elif isinstance(v, float):
lst_2d.append([format_names(k), f"{v:.3g}"])
elif isinstance(v, bool):
lst_2d.append([format_names(k), ("Watermarked" if v else "Human/Unwatermarked")])
else:
lst_2d.append([format_names(k), f"{v}"])
if "confidence" in score_dict:
lst_2d.insert(-2,["z-score Threshold", f"{detection_threshold}"])
else:
lst_2d.insert(-1,["z-score Threshold", f"{detection_threshold}"])
return lst_2d
def detect(input_text, args, tokenizer, device=None, return_green_token_mask=True):
"""Instantiate the WatermarkDetection object and call detect on
the input text returning the scores and outcome of the test"""
print(f"Detecting with {args}")
print(f"Detection Tokenizer: {type(tokenizer)}")
watermark_detector = WatermarkDetector(vocab=list(tokenizer.get_vocab().values()),
gamma=args.gamma,
seeding_scheme=args.seeding_scheme,
device=device,
tokenizer=tokenizer,
z_threshold=args.detection_z_threshold,
normalizers=args.normalizers,
ignore_repeated_bigrams=args.ignore_repeated_bigrams,
select_green_tokens=args.select_green_tokens)
# for now, just don't display the green token mask
# if we're using normalizers or ignore_repeated_bigrams
if args.normalizers != [] or args.ignore_repeated_bigrams:
return_green_token_mask = False
error = False
green_token_mask = None
if input_text == "":
error = True
else:
try:
score_dict = watermark_detector.detect(input_text, return_green_token_mask=return_green_token_mask)
green_token_mask = score_dict.pop("green_token_mask", None)
output = list_format_scores(score_dict, watermark_detector.z_threshold)
except ValueError as e:
print(e)
error = True
if error:
output = [["Error","string too short to compute metrics"]]
output += [["",""] for _ in range(6)]
html_output = "[No highlight markup generated]"
if green_token_mask is None:
html_output = "[Visualizing masks with ignore_repeated_bigrams enabled is not supported, toggle off to see the mask for this text. The mask is the same in both cases - only counting/stats are affected.]"
if green_token_mask is not None:
# hack bc we need a fast tokenizer with charspan support
if "opt" in args.model_name_or_path:
tokenizer = OPT_TOKENIZER.from_pretrained(args.model_name_or_path)
tokens = tokenizer(input_text)
if tokens["input_ids"][0] == tokenizer.bos_token_id:
tokens["input_ids"] = tokens["input_ids"][1:] # ignore attention mask
skip = watermark_detector.min_prefix_len
charspans = [tokens.token_to_chars(i) for i in range(skip,len(tokens["input_ids"]))]
charspans = [cs for cs in charspans if cs is not None] # remove the special token spans
if len(charspans) != len(green_token_mask): breakpoint()
assert len(charspans) == len(green_token_mask)
tags = [(f'<span class="green">{input_text[cs.start:cs.end]}</span>' if m else f'<span class="red">{input_text[cs.start:cs.end]}</span>') for cs, m in zip(charspans, green_token_mask)]
html_output = f'<p>{" ".join(tags)}</p>'
return output, args, tokenizer, html_output
def run_gradio(args, model=None, device=None, tokenizer=None):
"""Define and launch the gradio demo interface"""
check_prompt_partial = partial(check_prompt, model=model, device=device)
generate_partial = partial(generate, model=model, device=device)
detect_partial = partial(detect, device=device)
css = """
.green { color: black!important;line-height:1.9em; padding: 0.2em 0.2em; background: #ccffcc; border-radius:0.5rem;}
.red { color: black!important;line-height:1.9em; padding: 0.2em 0.2em; background: #ffad99; border-radius:0.5rem;}
"""
with gr.Blocks(css=css) as demo:
# Top section, greeting and instructions
with gr.Row():
with gr.Column(scale=9):
gr.Markdown(
"""
## 💧 [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226) 🔍
"""
)
with gr.Column(scale=1):
gr.Markdown(
"""
[![](https://badgen.net/badge/icon/GitHub?icon=github&label)](https://github.com/jwkirchenbauer/lm-watermarking)
"""
)
# if model_name_or_path at startup not one of the API models then add to dropdown
# all_models = sorted(list(set(list(API_MODEL_MAP.keys())+[args.model_name_or_path])))
all_models = [args.model_name_or_path]
model_selector = gr.Dropdown(
all_models,
value=args.model_name_or_path,
label="Language Model",
)
# Construct state for parameters, define updates and toggles
default_prompt = args.__dict__.pop("default_prompt")
session_args = gr.State(value=args)
# note that state obj automatically calls value if it's a callable, want to avoid calling tokenizer at startup
session_tokenizer = gr.State(value=lambda : tokenizer)
with gr.Tab("Welcome"):
with gr.Row():
with gr.Column(scale=2):
gr.Markdown(
"""
Potential harms of large language models can be mitigated by *watermarking* a model's output.
*Watermarks* are embedded signals in the generated text that are invisible to humans but algorithmically
detectable, that allow *anyone* to later check whether a given span of text
was likely to have been generated by a model that uses the watermark.
This space showcases a watermarking approach that can be applied to _any_ generative language model.
For demonstration purposes, the space demos a relatively small open-source language model.
Such a model is less powerful than proprietary commercial tools like ChatGPT, Claude, or Gemini.
Generally, prompts that entail a short, low entropy response such as the few word answer to a factual trivia question,
will not exhibit a strong watermark presence, while longer watermarked outputs will produce higher detection statistics.
"""
)
gr.Markdown(
"""
**[Generate & Detect]**: The first tab shows that the watermark can be embedded with
negligible impact on text quality. You can try any prompt and compare the quality of
normal text (*Output Without Watermark*) to the watermarked text (*Output With Watermark*) below it.
You can also "see" the watermark by looking at the **Highlighted** tab where the tokens are
colored green or red depending on which list they are in.
Metrics on the right show that the watermark can be reliably detected given a reasonably small number of tokens (25-50).
Detection is very efficient and does not use the language model or its parameters.
**[Detector Only]**: You can also copy-paste the watermarked text (or any other text)
into the second tab. This can be used to see how many sentences you could remove and still detect the watermark.
You can also verify here that the detection has, by design, a low false-positive rate;
This means that human-generated text that you copy into this detector will not be marked as machine-generated.
You can find more details about how this watermark functions in our paper ["A Watermark for Large Language Models"](https://arxiv.org/abs/2301.10226), presented at ICML 2023.
Additionally, read about our study on the reliabilty of this watermarking style in ["On the Reliability of Watermarks for Large Language Models"](https://arxiv.org/abs/2306.04634), presented at ICLR 2024.
"""
)
with gr.Column(scale=1):
gr.Markdown(
"""
![](https://drive.google.com/uc?export=view&id=1yVLPcjm-xvaCjQyc3FGLsWIU84v1QRoC)
"""
)
with gr.Tab("Generate & Detect"):
with gr.Row():
prompt = gr.Textbox(label=f"Prompt", interactive=True,lines=10,max_lines=10, value=default_prompt)
with gr.Row():
generate_btn = gr.Button("Generate")
with gr.Row():
with gr.Column(scale=2):
with gr.Tab("Output Without Watermark (Raw Text)"):
output_without_watermark = gr.Textbox(interactive=False,lines=14,max_lines=14)
with gr.Tab("Highlighted"):
html_without_watermark = gr.HTML(elem_id="html-without-watermark")
with gr.Column(scale=1):
without_watermark_detection_result = gr.Dataframe(headers=["Metric", "Value"], interactive=False,row_count=7,col_count=2)
with gr.Row():
with gr.Column(scale=2):
with gr.Tab("Output With Watermark (Raw Text)"):
output_with_watermark = gr.Textbox(interactive=False,lines=14,max_lines=14)
with gr.Tab("Highlighted"):
html_with_watermark = gr.HTML(elem_id="html-with-watermark")
with gr.Column(scale=1):
with_watermark_detection_result = gr.Dataframe(headers=["Metric", "Value"],interactive=False,row_count=7,col_count=2)
redecoded_input = gr.Textbox(visible=False)
truncation_warning = gr.Number(visible=False)
def truncate_prompt(redecoded_input, truncation_warning, orig_prompt, args):
if truncation_warning:
return redecoded_input + f"\n\n[Prompt was truncated before generation due to length...]", args
else:
return orig_prompt, args
with gr.Tab("Detector Only"):
with gr.Row():
with gr.Column(scale=2):
with gr.Tab("Text to Analyze"):
detection_input = gr.Textbox(interactive=True,lines=14,max_lines=14)
with gr.Tab("Highlighted"):
html_detection_input = gr.HTML(elem_id="html-detection-input")
with gr.Column(scale=1):
detection_result = gr.Dataframe(headers=["Metric", "Value"], interactive=False,row_count=7,col_count=2)
with gr.Row():
detect_btn = gr.Button("Detect")
# Parameter selection group
with gr.Accordion("Advanced Settings",open=False):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown(f"#### Generation Parameters")
with gr.Row():
decoding = gr.Radio(label="Decoding Method",choices=["multinomial", "greedy"], value=("multinomial" if args.use_sampling else "greedy"))
with gr.Row():
sampling_temp = gr.Slider(label="Sampling Temperature", minimum=0.1, maximum=1.0, step=0.1, value=args.sampling_temp, visible=True)
with gr.Row():
generation_seed = gr.Number(label="Generation Seed",value=args.generation_seed, interactive=True)
with gr.Row():
n_beams = gr.Dropdown(label="Number of Beams",choices=list(range(1,11,1)), value=args.n_beams, visible=((not args.use_sampling) and (not args.model_name_or_path in API_MODEL_MAP)))
with gr.Row():
max_new_tokens = gr.Slider(label="Max Generated Tokens", minimum=10, maximum=1000, step=10, value=args.max_new_tokens)
with gr.Column(scale=1):
gr.Markdown(f"#### Watermark Parameters")
with gr.Row():
gamma = gr.Slider(label="gamma",minimum=0.1, maximum=0.9, step=0.05, value=args.gamma)
with gr.Row():
delta = gr.Slider(label="delta",minimum=0.0, maximum=10.0, step=0.1, value=args.delta)
gr.Markdown(f"#### Detector Parameters")
with gr.Row():
detection_z_threshold = gr.Slider(label="z-score threshold",minimum=0.0, maximum=10.0, step=0.1, value=args.detection_z_threshold)
with gr.Row():
ignore_repeated_bigrams = gr.Checkbox(label="Ignore Bigram Repeats")
with gr.Row():
normalizers = gr.CheckboxGroup(label="Normalizations", choices=["unicode", "homoglyphs", "truecase"], value=args.normalizers)
with gr.Row():
gr.Markdown(f"_Note: sliders don't always update perfectly. Clicking on the bar or using the number window to the right can help. Window below shows the current settings._")
with gr.Row():
current_parameters = gr.Textbox(label="Current Parameters", value=args)
with gr.Accordion("Legacy Settings",open=False):
with gr.Row():
with gr.Column(scale=1):
seed_separately = gr.Checkbox(label="Seed both generations separately", value=args.seed_separately)
with gr.Column(scale=1):
select_green_tokens = gr.Checkbox(label="Select 'greenlist' from partition", value=args.select_green_tokens)
with gr.Accordion("What do the settings do?",open=False):
gr.Markdown(
"""
#### Generation Parameters:
- **Decoding Method** : We can generate tokens from the model using either multinomial sampling or we can generate using greedy decoding.
- **Sampling Temperature** : If using multinomial sampling we can set the temperature of the sampling distribution.
0.0 is equivalent to greedy decoding, and 1.0 is the maximum amount of variability/entropy in the next token distribution.
0.7 strikes a nice balance between faithfulness to the model's estimate of top candidates while adding variety. Does not apply for greedy decoding.
- **Generation Seed** : The integer to pass to the torch random number generator before running generation. Makes the multinomial sampling strategy
outputs reproducible. Does not apply for greedy decoding.
- **Number of Beams** : When using greedy decoding, we can also set the number of beams to > 1 to enable beam search.
This is not implemented/excluded from paper for multinomial sampling but may be added in future.
- **Max Generated Tokens** : The `max_new_tokens` parameter passed to the generation method to stop the output at a certain number of new tokens.
Note that the model is free to generate fewer tokens depending on the prompt.
Implicitly this sets the maximum number of prompt tokens possible as the model's maximum input length minus `max_new_tokens`,
and inputs will be truncated accordingly.
#### Watermark Parameters:
- **gamma** : The fraction of the vocabulary to be partitioned into the greenlist at each generation step.
Smaller gamma values create a stronger watermark by enabling the watermarked model to achieve
a greater differentiation from human/unwatermarked text because it is preferentially sampling
from a smaller green set making those tokens less likely to occur by chance.
- **delta** : The amount of positive bias to add to the logits of every token in the greenlist
at each generation step before sampling/choosing the next token. Higher delta values
mean that the greenlist tokens are more heavily preferred by the watermarked model
and as the bias becomes very large the watermark transitions from "soft" to "hard".
For a hard watermark, nearly all tokens are green, but this can have a detrimental effect on
generation quality, especially when there is not a lot of flexibility in the distribution.
#### Detector Parameters:
- **z-score threshold** : the z-score cuttoff for the hypothesis test. Higher thresholds (such as 4.0) make
_false positives_ (predicting that human/unwatermarked text is watermarked) very unlikely
as a genuine human text with a significant number of tokens will almost never achieve
that high of a z-score. Lower thresholds will capture more _true positives_ as some watermarked
texts will contain less green tokens and achive a lower z-score, but still pass the lower bar and
be flagged as "watermarked". However, a lowere threshold will increase the chance that human text
that contains a slightly higher than average number of green tokens is erroneously flagged.
4.0-5.0 offers extremely low false positive rates while still accurately catching most watermarked text.
- **Ignore Bigram Repeats** : This alternate detection algorithm only considers the unique bigrams in the text during detection,
computing the greenlists based on the first in each pair and checking whether the second falls within the list.
This means that `T` is now the unique number of bigrams in the text, which becomes less than the total
number of tokens generated if the text contains a lot of repetition. See the paper for a more detailed discussion.
- **Normalizations** : we implement a few basic normaliations to defend against various adversarial perturbations of the
text analyzed during detection. Currently we support converting all chracters to unicode,
replacing homoglyphs with a canonical form, and standardizing the capitalization.
See the paper for a detailed discussion of input normalization.
"""
)
with gr.Accordion("What do the output metrics mean?",open=False):
gr.Markdown(
"""
- `z-score threshold` : The cuttoff for the hypothesis test
- `Tokens Counted (T)` : The number of tokens in the output that were counted by the detection algorithm.
The first token is ommitted in the simple, single token seeding scheme since there is no way to generate
a greenlist for it as it has no prefix token(s). Under the "Ignore Bigram Repeats" detection algorithm,
described in the bottom panel, this can be much less than the total number of tokens generated if there is a lot of repetition.
- `# Tokens in Greenlist` : The number of tokens that were observed to fall in their respective greenlist
- `Fraction of T in Greenlist` : The `# Tokens in Greenlist` / `T`. This is expected to be approximately `gamma` for human/unwatermarked text.
- `z-score` : The test statistic for the detection hypothesis test. If larger than the `z-score threshold`
we "reject the null hypothesis" that the text is human/unwatermarked, and conclude it is watermarked
- `p value` : The likelihood of observing the computed `z-score` under the null hypothesis. This is the likelihood of
observing the `Fraction of T in Greenlist` given that the text was generated without knowledge of the watermark procedure/greenlists.
If this is extremely _small_ we are confident that this many green tokens was not chosen by random chance.
- `prediction` : The outcome of the hypothesis test - whether the observed `z-score` was higher than the `z-score threshold`
- `confidence` : If we reject the null hypothesis, and the `prediction` is "Watermarked", then we report 1-`p value` to represent
the confidence of the detection based on the unlikeliness of this `z-score` observation.
"""
)
gr.HTML("""
<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.
Follow the github link at the top and host the demo on your own GPU hardware to test out larger models.
<br/>
<a href="https://huggingface.co/spaces/tomg-group-umd/lm-watermarking?duplicate=true">
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
<p/>
""")
# Register main generation tab click, outputing generations as well as a the encoded+redecoded+potentially truncated prompt and flag, then call detection
generate_btn.click(fn=check_prompt_partial, inputs=[prompt,session_args,session_tokenizer], outputs=[redecoded_input, truncation_warning, session_args]).success(
fn=generate_partial, inputs=[redecoded_input,session_args,session_tokenizer], outputs=[output_without_watermark, output_with_watermark]).success(
fn=detect_partial, inputs=[output_without_watermark,session_args,session_tokenizer], outputs=[without_watermark_detection_result,session_args,session_tokenizer,html_without_watermark]).success(
fn=detect_partial, inputs=[output_with_watermark,session_args,session_tokenizer], outputs=[with_watermark_detection_result,session_args,session_tokenizer,html_with_watermark])
# Show truncated version of prompt if truncation occurred
redecoded_input.change(fn=truncate_prompt, inputs=[redecoded_input,truncation_warning,prompt,session_args], outputs=[prompt,session_args])
# Register main detection tab click
detect_btn.click(fn=detect_partial, inputs=[detection_input,session_args,session_tokenizer], outputs=[detection_result, session_args,session_tokenizer,html_detection_input], api_name="detection")
# State management logic
# define update callbacks that change the state dict
def update_model(session_state, value): session_state.model_name_or_path = value; return session_state
def update_sampling_temp(session_state, value): session_state.sampling_temp = float(value); return session_state
def update_generation_seed(session_state, value): session_state.generation_seed = int(value); return session_state
def update_gamma(session_state, value): session_state.gamma = float(value); return session_state
def update_delta(session_state, value): session_state.delta = float(value); return session_state
def update_detection_z_threshold(session_state, value): session_state.detection_z_threshold = float(value); return session_state
def update_decoding(session_state, value):
if value == "multinomial":
session_state.use_sampling = True
elif value == "greedy":
session_state.use_sampling = False
return session_state
def toggle_sampling_vis(value):
if value == "multinomial":
return gr.update(visible=True)
elif value == "greedy":
return gr.update(visible=False)
def toggle_sampling_vis_inv(value):
if value == "multinomial":
return gr.update(visible=False)
elif value == "greedy":
return gr.update(visible=True)
# if model name is in the list of api models, set the num beams parameter to 1 and hide n_beams
def toggle_vis_for_api_model(value):
if value in API_MODEL_MAP:
return gr.update(visible=False)
else:
return gr.update(visible=True)
def toggle_beams_for_api_model(value, orig_n_beams):
if value in API_MODEL_MAP:
return gr.update(value=1)
else:
return gr.update(value=orig_n_beams)
# if model name is in the list of api models, set the interactive parameter to false
def toggle_interactive_for_api_model(value):
if value in API_MODEL_MAP:
return gr.update(interactive=False)
else:
return gr.update(interactive=True)
# if model name is in the list of api models, set gamma and delta based on API map
def toggle_gamma_for_api_model(value, orig_gamma):
if value in API_MODEL_MAP:
return gr.update(value=API_MODEL_MAP[value]["gamma"])
else:
return gr.update(value=orig_gamma)
def toggle_delta_for_api_model(value, orig_delta):
if value in API_MODEL_MAP:
return gr.update(value=API_MODEL_MAP[value]["delta"])
else:
return gr.update(value=orig_delta)
def update_n_beams(session_state, value): session_state.n_beams = value; return session_state
def update_max_new_tokens(session_state, value): session_state.max_new_tokens = int(value); return session_state
def update_ignore_repeated_bigrams(session_state, value): session_state.ignore_repeated_bigrams = value; return session_state
def update_normalizers(session_state, value): session_state.normalizers = value; return session_state
def update_seed_separately(session_state, value): session_state.seed_separately = value; return session_state
def update_select_green_tokens(session_state, value): session_state.select_green_tokens = value; return session_state
def update_tokenizer(model_name_or_path):
# if model_name_or_path == ALPACA_MODEL_NAME:
# return ALPACA_MODEL_TOKENIZER.from_pretrained(ALPACA_TOKENIZER_PATH)
# else:
return AutoTokenizer.from_pretrained(model_name_or_path)
def check_model(value): return value if (value!="" and value is not None) else args.model_name_or_path
# enforce constraint that model cannot be null or empty
# then attach model callbacks in particular
model_selector.change(check_model, inputs=[model_selector], outputs=[model_selector]).then(
toggle_vis_for_api_model,inputs=[model_selector], outputs=[n_beams]
).then(
toggle_beams_for_api_model,inputs=[model_selector,n_beams], outputs=[n_beams]
).then(
toggle_interactive_for_api_model,inputs=[model_selector], outputs=[gamma]
).then(
toggle_interactive_for_api_model,inputs=[model_selector], outputs=[delta]
).then(
toggle_gamma_for_api_model,inputs=[model_selector,gamma], outputs=[gamma]
).then(
toggle_delta_for_api_model,inputs=[model_selector,delta], outputs=[delta]
).then(
update_tokenizer,inputs=[model_selector], outputs=[session_tokenizer]
).then(
update_model,inputs=[session_args, model_selector], outputs=[session_args]
).then(
lambda value: str(value), inputs=[session_args], outputs=[current_parameters]
)
# registering callbacks for toggling the visibilty of certain parameters based on the values of others
decoding.change(toggle_sampling_vis,inputs=[decoding], outputs=[sampling_temp])
decoding.change(toggle_sampling_vis,inputs=[decoding], outputs=[generation_seed])
decoding.change(toggle_sampling_vis_inv,inputs=[decoding], outputs=[n_beams])
decoding.change(toggle_vis_for_api_model,inputs=[model_selector], outputs=[n_beams])
# registering all state update callbacks
decoding.change(update_decoding,inputs=[session_args, decoding], outputs=[session_args])
sampling_temp.change(update_sampling_temp,inputs=[session_args, sampling_temp], outputs=[session_args])
generation_seed.change(update_generation_seed,inputs=[session_args, generation_seed], outputs=[session_args])
n_beams.change(update_n_beams,inputs=[session_args, n_beams], outputs=[session_args])
max_new_tokens.change(update_max_new_tokens,inputs=[session_args, max_new_tokens], outputs=[session_args])
gamma.change(update_gamma,inputs=[session_args, gamma], outputs=[session_args])
delta.change(update_delta,inputs=[session_args, delta], outputs=[session_args])
detection_z_threshold.change(update_detection_z_threshold,inputs=[session_args, detection_z_threshold], outputs=[session_args])
ignore_repeated_bigrams.change(update_ignore_repeated_bigrams,inputs=[session_args, ignore_repeated_bigrams], outputs=[session_args])
normalizers.change(update_normalizers,inputs=[session_args, normalizers], outputs=[session_args])
seed_separately.change(update_seed_separately,inputs=[session_args, seed_separately], outputs=[session_args])
select_green_tokens.change(update_select_green_tokens,inputs=[session_args, select_green_tokens], outputs=[session_args])
# register additional callback on button clicks that updates the shown parameters window
generate_btn.click(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
detect_btn.click(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
# When the parameters change, display the update and also fire detection, since some detection params dont change the model output.
delta.change(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
gamma.change(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
gamma.change(fn=detect_partial, inputs=[output_without_watermark,session_args,session_tokenizer], outputs=[without_watermark_detection_result,session_args,session_tokenizer,html_without_watermark])
gamma.change(fn=detect_partial, inputs=[output_with_watermark,session_args,session_tokenizer], outputs=[with_watermark_detection_result,session_args,session_tokenizer,html_with_watermark])
gamma.change(fn=detect_partial, inputs=[detection_input,session_args,session_tokenizer], outputs=[detection_result,session_args,session_tokenizer,html_detection_input])
detection_z_threshold.change(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
detection_z_threshold.change(fn=detect_partial, inputs=[output_without_watermark,session_args,session_tokenizer], outputs=[without_watermark_detection_result,session_args,session_tokenizer,html_without_watermark])
detection_z_threshold.change(fn=detect_partial, inputs=[output_with_watermark,session_args,session_tokenizer], outputs=[with_watermark_detection_result,session_args,session_tokenizer,html_with_watermark])
detection_z_threshold.change(fn=detect_partial, inputs=[detection_input,session_args,session_tokenizer], outputs=[detection_result,session_args,session_tokenizer,html_detection_input])
ignore_repeated_bigrams.change(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
ignore_repeated_bigrams.change(fn=detect_partial, inputs=[output_without_watermark,session_args,session_tokenizer], outputs=[without_watermark_detection_result,session_args,session_tokenizer,html_without_watermark])
ignore_repeated_bigrams.change(fn=detect_partial, inputs=[output_with_watermark,session_args,session_tokenizer], outputs=[with_watermark_detection_result,session_args,session_tokenizer,html_with_watermark])
ignore_repeated_bigrams.change(fn=detect_partial, inputs=[detection_input,session_args,session_tokenizer], outputs=[detection_result,session_args,session_tokenizer,html_detection_input])
normalizers.change(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
normalizers.change(fn=detect_partial, inputs=[output_without_watermark,session_args,session_tokenizer], outputs=[without_watermark_detection_result,session_args,session_tokenizer,html_without_watermark])
normalizers.change(fn=detect_partial, inputs=[output_with_watermark,session_args,session_tokenizer], outputs=[with_watermark_detection_result,session_args,session_tokenizer,html_with_watermark])
normalizers.change(fn=detect_partial, inputs=[detection_input,session_args,session_tokenizer], outputs=[detection_result,session_args,session_tokenizer,html_detection_input])
select_green_tokens.change(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
select_green_tokens.change(fn=detect_partial, inputs=[output_without_watermark,session_args,session_tokenizer], outputs=[without_watermark_detection_result,session_args,session_tokenizer,html_without_watermark])
select_green_tokens.change(fn=detect_partial, inputs=[output_with_watermark,session_args,session_tokenizer], outputs=[with_watermark_detection_result,session_args,session_tokenizer,html_with_watermark])
select_green_tokens.change(fn=detect_partial, inputs=[detection_input,session_args,session_tokenizer], outputs=[detection_result,session_args,session_tokenizer,html_detection_input])
# demo.queue(concurrency_count=3)
demo.queue()
if args.demo_public:
demo.launch(share=True) # exposes app to the internet via randomly generated link
else:
demo.launch()
def main(args):
"""Run a command line version of the generation and detection operations
and optionally launch and serve the gradio demo"""
# Initial arg processing and log
args.normalizers = (args.normalizers.split(",") if args.normalizers else [])
print(args)
if not args.skip_model_load:
model, tokenizer, device = load_model(args)
else:
model, tokenizer, device = None, None, None
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path)
if args.use_gpu:
device = "cuda" if torch.cuda.is_available() else "cpu"
else:
device = "cpu"
# terrapin example
input_text = (
"The diamondback terrapin or simply terrapin (Malaclemys terrapin) is a "
"species of turtle native to the brackish coastal tidal marshes of the "
"Northeastern and southern United States, and in Bermuda.[6] It belongs "
"to the monotypic genus Malaclemys. It has one of the largest ranges of "
"all turtles in North America, stretching as far south as the Florida Keys "
"and as far north as Cape Cod.[7] The name 'terrapin' is derived from the "
"Algonquian word torope.[8] It applies to Malaclemys terrapin in both "
"British English and American English. The name originally was used by "
"early European settlers in North America to describe these brackish-water "
"turtles that inhabited neither freshwater habitats nor the sea. It retains "
"this primary meaning in American English.[8] In British English, however, "
"other semi-aquatic turtle species, such as the red-eared slider, might "
"also be called terrapins. The common name refers to the diamond pattern "
"on top of its shell (carapace), but the overall pattern and coloration "
"vary greatly. The shell is usually wider at the back than in the front, "
"and from above it appears wedge-shaped. The shell coloring can vary "
"from brown to grey, and its body color can be grey, brown, yellow, "
"or white. All have a unique pattern of wiggly, black markings or spots "
"on their body and head. The diamondback terrapin has large webbed "
"feet.[9] The species is"
)
args.default_prompt = input_text
# Generate and detect, report to stdout
if not args.skip_model_load:
term_width = 80
print("#"*term_width)
print("Prompt:")
print(input_text)
# a generator that yields (without_watermark, with_watermark) pairs
generator_outputs = generate(input_text,
args,
model=model,
device=device,
tokenizer=tokenizer)
# we need to iterate over it,
# but we only want the last output in this case
for out in generator_outputs:
decoded_output_without_watermark = out[0]
decoded_output_with_watermark = out[1]
without_watermark_detection_result = detect(decoded_output_without_watermark,
args,
device=device,
tokenizer=tokenizer,
return_green_token_mask=False)
with_watermark_detection_result = detect(decoded_output_with_watermark,
args,
device=device,
tokenizer=tokenizer,
return_green_token_mask=False)
print("#"*term_width)
print("Output without watermark:")
print(decoded_output_without_watermark)
print("-"*term_width)
print(f"Detection result @ {args.detection_z_threshold}:")
pprint(without_watermark_detection_result)
print("-"*term_width)
print("#"*term_width)
print("Output with watermark:")
print(decoded_output_with_watermark)
print("-"*term_width)
print(f"Detection result @ {args.detection_z_threshold}:")
pprint(with_watermark_detection_result)
print("-"*term_width)
# Launch the app to generate and detect interactively (implements the hf space demo)
if args.run_gradio:
run_gradio(args, model=model, tokenizer=tokenizer, device=device)
return
if __name__ == "__main__":
args = parse_args()
print(args)
main(args) |