File size: 53,893 Bytes
d6b2709
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5b3015
 
 
d6b2709
 
 
 
 
 
 
e2e6e76
 
 
 
 
d6b2709
 
e2e6e76
 
 
 
 
507fd5a
 
e2e6e76
 
 
3682749
 
507fd5a
 
d6b2709
29d8de2
d6b2709
 
 
 
 
 
 
 
 
 
29d8de2
d6b2709
 
 
 
 
 
b5b3015
 
d6b2709
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5b3015
 
 
dafc0b4
b5b3015
 
d6b2709
 
 
 
 
 
 
 
 
fa826da
d6b2709
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5b3015
 
 
 
 
 
6b83b21
 
 
 
 
 
811d741
 
 
 
 
 
ea229c1
 
 
 
 
 
d6b2709
 
 
a134a9d
29d8de2
 
ea229c1
 
b5b3015
d6b2709
b5b3015
811d741
 
ea229c1
 
811d741
 
d6b2709
 
 
 
 
ea229c1
811d741
 
 
d6b2709
 
 
 
 
 
b5b3015
d6b2709
507fd5a
 
5b3e92c
507fd5a
 
 
 
 
5b3e92c
507fd5a
 
 
 
 
 
 
 
 
 
5b3e92c
 
 
e2e6e76
5b3e92c
 
e2e6e76
5b3e92c
 
e2e6e76
5b3e92c
 
e2e6e76
507fd5a
e2e6e76
 
 
 
 
507fd5a
e2e6e76
 
d6b2709
507fd5a
e2e6e76
 
507fd5a
 
 
 
 
 
 
 
 
e2e6e76
 
 
507fd5a
b5b3015
 
e2e6e76
 
 
 
b5b3015
e2e6e76
 
b5b3015
e2e6e76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e6d24f
 
e2e6e76
b5b3015
e2e6e76
 
 
 
b5b3015
e2e6e76
 
 
 
b5b3015
e2e6e76
 
 
 
 
 
 
 
 
507fd5a
b5b3015
7d29596
29d8de2
7d29596
 
 
 
 
cee0410
 
7d29596
29d8de2
7d29596
29d8de2
7d29596
 
 
 
 
 
 
 
 
 
 
 
8bb4ab4
 
 
 
7d29596
 
e2e6e76
29d8de2
 
e2e6e76
507fd5a
 
 
b5b3015
 
 
 
 
 
 
 
 
4f1c9f2
 
 
 
 
507fd5a
e2e6e76
507fd5a
 
b5b3015
e2e6e76
 
 
507fd5a
 
 
 
 
7d29596
 
ea229c1
 
4f1c9f2
ea229c1
 
 
 
e2e6e76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5b3015
 
29d8de2
e2e6e76
507fd5a
 
b5b3015
e2e6e76
 
 
 
 
 
 
b5b3015
aed6478
8c252e3
aed6478
 
8c252e3
aed6478
 
8c252e3
aed6478
 
8c252e3
aed6478
 
507fd5a
ea229c1
 
507fd5a
 
 
 
 
7d29596
 
c958b82
7c3b96d
507fd5a
 
0e6d24f
a7d76f1
 
 
 
 
 
 
 
 
 
 
ea229c1
 
 
 
a7d76f1
 
 
 
 
 
e2e6e76
 
 
 
a7d76f1
 
 
 
 
 
 
ea229c1
 
a7d76f1
 
 
 
 
 
 
 
 
 
 
0e6d24f
 
c958b82
0e6d24f
 
 
 
e2e6e76
 
 
 
0e6d24f
7d29596
0e6d24f
 
e2e6e76
 
 
 
0e6d24f
7d29596
0e6d24f
 
 
 
 
 
 
 
b5b3015
0e6d24f
 
7d29596
fa85da4
 
 
 
7d29596
 
0e6d24f
7d29596
0e6d24f
b5b3015
 
 
 
 
 
 
 
 
 
 
 
507fd5a
4343565
 
b5b3015
 
7d29596
b5b3015
4343565
b5b3015
 
7d29596
 
 
b5b3015
 
 
 
7d29596
 
 
 
0e6d24f
 
 
 
 
 
29d8de2
a7d76f1
 
29d8de2
 
 
 
0a88363
 
29d8de2
 
0a88363
29d8de2
0a88363
29d8de2
0a88363
29d8de2
 
 
 
 
 
0a88363
29d8de2
 
 
0a88363
29d8de2
 
 
 
 
667cc50
 
 
0a88363
29d8de2
 
 
 
 
 
 
0a88363
29d8de2
 
 
0a88363
29d8de2
 
 
 
 
 
a7d76f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d29596
29d8de2
 
7d29596
 
 
 
 
b5b3015
e2e6e76
 
 
 
 
7d29596
 
 
fa85da4
7d29596
 
858fe91
507fd5a
b5b3015
 
 
 
7d29596
b5b3015
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
507fd5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dafc0b4
4343565
b5b3015
 
0e6d24f
 
e2e6e76
 
 
 
 
858fe91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
507fd5a
b5b3015
 
 
507fd5a
7d29596
0e6d24f
b5b3015
 
 
4343565
b5b3015
 
7d29596
b5b3015
 
0e6d24f
 
7d29596
0e6d24f
 
5b3e92c
507fd5a
7d29596
fa85da4
 
 
7d29596
fa85da4
 
 
7d29596
fa85da4
 
 
7d29596
fa85da4
 
 
7d29596
fa85da4
 
 
b5b3015
ea229c1
 
b5b3015
 
 
 
 
 
 
29d8de2
 
b5b3015
 
 
 
 
 
 
4343565
a7d76f1
 
 
 
 
b5b3015
a7d76f1
 
 
99fe45a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7d76f1
b5b3015
a7d76f1
 
507fd5a
a7d76f1
 
3ab266f
4343565
b5b3015
 
 
 
e2e6e76
 
 
 
 
 
 
 
 
 
 
 
a134a9d
 
 
e2e6e76
 
a134a9d
 
 
e2e6e76
 
b5b3015
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6b2709
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
# coding=utf-8
# Copyright 2023 Authors of "A Watermark for Large Language Models" 
# available at https://arxiv.org/abs/2301.10226
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import argparse
from pprint import pprint
from functools import partial

import numpy # for gradio hot reload
import gradio as gr

import torch

from transformers import (AutoTokenizer,
                          AutoModelForSeq2SeqLM,
                          AutoModelForCausalLM,
                          LogitsProcessorList)

# from local_tokenizers.tokenization_llama import LLaMATokenizer

from transformers import GPT2TokenizerFast
OPT_TOKENIZER = GPT2TokenizerFast

from watermark_processor import WatermarkLogitsProcessor, WatermarkDetector


# ALPACA_MODEL_NAME = "alpaca"
# ALPACA_MODEL_TOKENIZER = LLaMATokenizer
# ALPACA_TOKENIZER_PATH = "/cmlscratch/jkirchen/llama"

# FIXME correct lengths for all models
API_MODEL_MAP = {
    "google/flan-ul2"         : {"max_length": 1000, "gamma": 0.5, "delta": 2.0},
    "google/flan-t5-xxl"      : {"max_length": 1000, "gamma": 0.5, "delta": 2.0},
    "EleutherAI/gpt-neox-20b" : {"max_length": 1000, "gamma": 0.5, "delta": 2.0},
    # "bigscience/bloom"        : {"max_length": 1000, "gamma": 0.5, "delta": 2.0},
    # "bigscience/bloomz"       : {"max_length": 1000, "gamma": 0.5, "delta": 2.0},
}

def str2bool(v):
    """Util function for user friendly boolean flag args"""
    if isinstance(v, bool):
        return v
    if v.lower() in ('yes', 'true', 't', 'y', '1'):
        return True
    elif v.lower() in ('no', 'false', 'f', 'n', '0'):
        return False
    else:
        raise argparse.ArgumentTypeError('Boolean value expected.')

def parse_args():
    """Command line argument specification"""

    parser = argparse.ArgumentParser(description="A minimum working example of applying the watermark to any LLM that supports the huggingface 🤗 `generate` API")

    parser.add_argument(
        "--run_gradio",
        type=str2bool,
        default=True,
        help="Whether to launch as a gradio demo. Set to False if not installed and want to just run the stdout version.",
    )
    parser.add_argument(
        "--demo_public",
        type=str2bool,
        default=False,
        help="Whether to expose the gradio demo to the internet.",
    )
    parser.add_argument(
        "--model_name_or_path",
        type=str,
        default="facebook/opt-6.7b",
        help="Main model, path to pretrained model or model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--prompt_max_length",
        type=int,
        default=None,
        help="Truncation length for prompt, overrides model config's max length field.",
    )
    parser.add_argument(
        "--max_new_tokens",
        type=int,
        default=200,
        help="Maximmum number of new tokens to generate.",
    )
    parser.add_argument(
        "--generation_seed",
        type=int,
        default=123,
        help="Seed for setting the torch global rng prior to generation.",
    )
    parser.add_argument(
        "--use_sampling",
        type=str2bool,
        default=True,
        help="Whether to generate using multinomial sampling.",
    )
    parser.add_argument(
        "--sampling_temp",
        type=float,
        default=0.7,
        help="Sampling temperature to use when generating using multinomial sampling.",
    )
    parser.add_argument(
        "--n_beams",
        type=int,
        default=1,
        help="Number of beams to use for beam search. 1 is normal greedy decoding",
    )
    parser.add_argument(
        "--use_gpu",
        type=str2bool,
        default=True,
        help="Whether to run inference and watermark hashing/seeding/permutation on gpu.",
    )
    parser.add_argument(
        "--seeding_scheme",
        type=str,
        default="simple_1",
        help="Seeding scheme to use to generate the greenlists at each generation and verification step.",
    )
    parser.add_argument(
        "--gamma",
        type=float,
        default=0.25,
        help="The fraction of the vocabulary to partition into the greenlist at each generation and verification step.",
    )
    parser.add_argument(
        "--delta",
        type=float,
        default=2.0,
        help="The amount/bias to add to each of the greenlist token logits before each token sampling step.",
    )
    parser.add_argument(
        "--normalizers",
        type=str,
        default="",
        help="Single or comma separated list of the preprocessors/normalizer names to use when performing watermark detection.",
    )
    parser.add_argument(
        "--ignore_repeated_bigrams",
        type=str2bool,
        default=False,
        help="Whether to use the detection method that only counts each unqiue bigram once as either a green or red hit.",
    )
    parser.add_argument(
        "--detection_z_threshold",
        type=float,
        default=4.0,
        help="The test statistic threshold for the detection hypothesis test.",
    )
    parser.add_argument(
        "--select_green_tokens",
        type=str2bool,
        default=True,
        help="How to treat the permuation when selecting the greenlist tokens at each step. Legacy is (False) to pick the complement/reds first.",
    )
    parser.add_argument(
        "--skip_model_load",
        type=str2bool,
        default=False,
        help="Skip the model loading to debug the interface.",
    )
    parser.add_argument(
        "--seed_separately",
        type=str2bool,
        default=True,
        help="Whether to call the torch seed function before both the unwatermarked and watermarked generate calls.",
    )
    parser.add_argument(
        "--load_fp16",
        type=str2bool,
        default=False,
        help="Whether to run model in float16 precsion.",
    )
    parser.add_argument(
        "--load_bf16",
        type=str2bool,
        default=False,
        help="Whether to run model in float16 precsion.",
    )
    args = parser.parse_args()
    return args

def load_model(args):
    """Load and return the model and tokenizer"""

    args.is_seq2seq_model = any([(model_type in args.model_name_or_path.lower()) for model_type in ["t5","T0"]])
    args.is_decoder_only_model = any([(model_type in args.model_name_or_path.lower()) for model_type in ["gpt","opt","bloom","llama"]])
    if args.is_seq2seq_model:
        model = AutoModelForSeq2SeqLM.from_pretrained(args.model_name_or_path)
    elif args.is_decoder_only_model:
        if args.load_fp16:
            model = AutoModelForCausalLM.from_pretrained(args.model_name_or_path,torch_dtype=torch.float16, device_map='auto')
        elif args.load_bf16:
            model = AutoModelForCausalLM.from_pretrained(args.model_name_or_path,torch_dtype=torch.bfloat16, device_map='auto')
        else:
            model = AutoModelForCausalLM.from_pretrained(args.model_name_or_path)
    else:
        raise ValueError(f"Unknown model type: {args.model_name_or_path}")

    if args.use_gpu:
        device = "cuda" if torch.cuda.is_available() else "cpu"
        if args.load_fp16 or args.load_bf16: 
            pass
        else: 
            model = model.to(device)
    else:
        device = "cpu"
    model.eval()

    tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path)

    return model, tokenizer, device


from text_generation import InferenceAPIClient
from requests.exceptions import ReadTimeout
def generate_with_api(prompt, args):
    hf_api_key = os.environ.get("HF_API_KEY")
    if hf_api_key is None:
        raise ValueError("HF_API_KEY environment variable not set, cannot use HF API to generate text.")

    client = InferenceAPIClient(args.model_name_or_path, token=hf_api_key, timeout=60)
    
    assert args.n_beams == 1, "HF API models do not support beam search."
    generation_params = {
            "max_new_tokens": args.max_new_tokens,
            "do_sample": args.use_sampling,
        }
    if args.use_sampling:
        generation_params["temperature"] = args.sampling_temp
        generation_params["seed"] = args.generation_seed

    timeout_msg = "[Model API timeout error. Try reducing the max_new_tokens parameter or the prompt length.]"
    try:
        generation_params["watermark"] = False
        without_watermark_iterator = client.generate_stream(prompt, **generation_params)
    except ReadTimeout as e:
        print(e)
        without_watermark_iterator = (char for char in timeout_msg)
    try:
        generation_params["watermark"] = True
        with_watermark_iterator = client.generate_stream(prompt, **generation_params)
    except ReadTimeout as e:
        print(e)
        with_watermark_iterator = (char for char in timeout_msg)

    all_without_words, all_with_words = "", ""
    for without_word, with_word in zip(without_watermark_iterator, with_watermark_iterator):
        all_without_words += without_word.token.text
        all_with_words += with_word.token.text
        yield all_without_words, all_with_words


def check_prompt(prompt, args, tokenizer, model=None, device=None):

    # This applies to both the local and API model scenarios
    if args.model_name_or_path in API_MODEL_MAP:
        args.prompt_max_length = API_MODEL_MAP[args.model_name_or_path]["max_length"]
    elif hasattr(model.config,"max_position_embedding"):
        args.prompt_max_length = model.config.max_position_embeddings-args.max_new_tokens
    else:
        args.prompt_max_length = 2048-args.max_new_tokens

    tokd_input = tokenizer(prompt, return_tensors="pt", add_special_tokens=True, truncation=True, max_length=args.prompt_max_length).to(device)
    truncation_warning = True if tokd_input["input_ids"].shape[-1] == args.prompt_max_length else False
    redecoded_input = tokenizer.batch_decode(tokd_input["input_ids"], skip_special_tokens=True)[0]

    return (redecoded_input,
            int(truncation_warning),
            args)



def generate(prompt, args, tokenizer, model=None, device=None):
    """Instatiate the WatermarkLogitsProcessor according to the watermark parameters
       and generate watermarked text by passing it to the generate method of the model
       as a logits processor. """

    print(f"Generating with {args}")
    print(f"Prompt: {prompt}")

    if args.model_name_or_path in API_MODEL_MAP:
        api_outputs = generate_with_api(prompt, args)
        yield from api_outputs
    else:
        tokd_input = tokenizer(prompt, return_tensors="pt", add_special_tokens=True, truncation=True, max_length=args.prompt_max_length).to(device)

        watermark_processor = WatermarkLogitsProcessor(vocab=list(tokenizer.get_vocab().values()),
                                                        gamma=args.gamma,
                                                        delta=args.delta,
                                                        seeding_scheme=args.seeding_scheme,
                                                        select_green_tokens=args.select_green_tokens)

        gen_kwargs = dict(max_new_tokens=args.max_new_tokens)

        if args.use_sampling:
            gen_kwargs.update(dict(
                do_sample=True, 
                top_k=0,
                temperature=args.sampling_temp
            ))
        else:
            gen_kwargs.update(dict(
                num_beams=args.n_beams
            ))

        generate_without_watermark = partial(
            model.generate,
            **gen_kwargs
        )
        generate_with_watermark = partial(
            model.generate,
            logits_processor=LogitsProcessorList([watermark_processor]), 
            **gen_kwargs
        )

        torch.manual_seed(args.generation_seed)
        output_without_watermark = generate_without_watermark(**tokd_input)

        # optional to seed before second generation, but will not be the same again generally, unless delta==0.0, no-op watermark
        if args.seed_separately: 
            torch.manual_seed(args.generation_seed)
        output_with_watermark = generate_with_watermark(**tokd_input)

        if args.is_decoder_only_model:
            # need to isolate the newly generated tokens
            output_without_watermark = output_without_watermark[:,tokd_input["input_ids"].shape[-1]:]
            output_with_watermark = output_with_watermark[:,tokd_input["input_ids"].shape[-1]:]

        decoded_output_without_watermark = tokenizer.batch_decode(output_without_watermark, skip_special_tokens=True)[0]
        decoded_output_with_watermark = tokenizer.batch_decode(output_with_watermark, skip_special_tokens=True)[0]

        # mocking the API outputs in a whitespace split generator style
        all_without_words, all_with_words = "", ""
        for without_word, with_word in zip(decoded_output_without_watermark.split(), decoded_output_with_watermark.split()):
            all_without_words += without_word + " "
            all_with_words += with_word + " "
            yield all_without_words, all_with_words


def format_names(s):
    """Format names for the gradio demo interface"""
    s=s.replace("num_tokens_scored","Tokens Counted (T)")
    s=s.replace("num_green_tokens","# Tokens in Greenlist")
    s=s.replace("green_fraction","Fraction of T in Greenlist")
    s=s.replace("z_score","z-score")
    s=s.replace("p_value","p value")
    s=s.replace("prediction","Prediction")
    s=s.replace("confidence","Confidence")
    return s

def list_format_scores(score_dict, detection_threshold):
    """Format the detection metrics into a gradio dataframe input format"""
    lst_2d = []
    for k,v in score_dict.items():
        if k=='green_fraction': 
            lst_2d.append([format_names(k), f"{v:.1%}"])
        elif k=='confidence': 
            lst_2d.append([format_names(k), f"{v:.3%}"])
        elif isinstance(v, float): 
            lst_2d.append([format_names(k), f"{v:.3g}"])
        elif isinstance(v, bool):
            lst_2d.append([format_names(k), ("Watermarked" if v else "Human/Unwatermarked")])
        else: 
            lst_2d.append([format_names(k), f"{v}"])
    if "confidence" in score_dict:
        lst_2d.insert(-2,["z-score Threshold", f"{detection_threshold}"])
    else:
        lst_2d.insert(-1,["z-score Threshold", f"{detection_threshold}"])
    return lst_2d

def detect(input_text, args, tokenizer, device=None, return_green_token_mask=True):
    """Instantiate the WatermarkDetection object and call detect on
        the input text returning the scores and outcome of the test"""

    print(f"Detecting with {args}")
    print(f"Detection Tokenizer: {type(tokenizer)}")

    watermark_detector = WatermarkDetector(vocab=list(tokenizer.get_vocab().values()),
                                        gamma=args.gamma,
                                        seeding_scheme=args.seeding_scheme,
                                        device=device,
                                        tokenizer=tokenizer,
                                        z_threshold=args.detection_z_threshold,
                                        normalizers=args.normalizers,
                                        ignore_repeated_bigrams=args.ignore_repeated_bigrams,
                                        select_green_tokens=args.select_green_tokens)
    # for now, just don't display the green token mask 
    # if we're using normalizers or ignore_repeated_bigrams
    if args.normalizers != [] or args.ignore_repeated_bigrams:
        return_green_token_mask = False
    
    error = False
    green_token_mask = None
    if input_text == "":
        error = True
    else:
        try:
            score_dict = watermark_detector.detect(input_text, return_green_token_mask=return_green_token_mask)
            green_token_mask = score_dict.pop("green_token_mask", None)
            output = list_format_scores(score_dict, watermark_detector.z_threshold)
        except ValueError as e:
            print(e)
            error = True
    if error:
        output = [["Error","string too short to compute metrics"]]
        output += [["",""] for _ in range(6)]
    
    
    html_output = "[No highlight markup generated]"
    
    if green_token_mask is None:
        html_output = "[Visualizing masks with ignore_repeated_bigrams enabled is not supported, toggle off to see the mask for this text. The mask is the same in both cases - only counting/stats are affected.]"
    
    if green_token_mask is not None:
        # hack bc we need a fast tokenizer with charspan support
        if "opt" in args.model_name_or_path:
            tokenizer = OPT_TOKENIZER.from_pretrained(args.model_name_or_path)

        tokens = tokenizer(input_text)
        if tokens["input_ids"][0] == tokenizer.bos_token_id:
            tokens["input_ids"] = tokens["input_ids"][1:] # ignore attention mask
        skip = watermark_detector.min_prefix_len
        charspans = [tokens.token_to_chars(i) for i in range(skip,len(tokens["input_ids"]))]
        charspans = [cs for cs in charspans if cs is not None] # remove the special token spans

        if len(charspans) != len(green_token_mask): breakpoint()
        assert len(charspans) == len(green_token_mask)

        tags = [(f'<span class="green">{input_text[cs.start:cs.end]}</span>' if m else f'<span class="red">{input_text[cs.start:cs.end]}</span>') for cs, m in zip(charspans, green_token_mask)]
        html_output = f'<p>{" ".join(tags)}</p>'

    return output, args, tokenizer, html_output

def run_gradio(args, model=None, device=None, tokenizer=None):
    """Define and launch the gradio demo interface"""
    check_prompt_partial = partial(check_prompt, model=model, device=device)
    generate_partial = partial(generate, model=model, device=device)
    detect_partial = partial(detect, device=device)


    css = """
    .green { color: black!important;line-height:1.9em; padding: 0.2em 0.2em; background: #ccffcc; border-radius:0.5rem;}
    .red { color: black!important;line-height:1.9em; padding: 0.2em 0.2em; background: #ffad99; border-radius:0.5rem;}
    """

    with gr.Blocks(css=css) as demo:
        # Top section, greeting and instructions
        with gr.Row():
            with gr.Column(scale=9):
                gr.Markdown(
                """
                ## 💧 [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226) 🔍
                """
                )
            with gr.Column(scale=1):
                gr.Markdown(
                """
                [![](https://badgen.net/badge/icon/GitHub?icon=github&label)](https://github.com/jwkirchenbauer/lm-watermarking)
                """
                )
                # if model_name_or_path at startup not one of the API models then add to dropdown 
                # all_models = sorted(list(set(list(API_MODEL_MAP.keys())+[args.model_name_or_path])))
                all_models = [args.model_name_or_path]
                model_selector = gr.Dropdown(
                    all_models,
                    value=args.model_name_or_path, 
                    label="Language Model",
                )

        # Construct state for parameters, define updates and toggles
        default_prompt = args.__dict__.pop("default_prompt")
        session_args = gr.State(value=args)
        # note that state obj automatically calls value if it's a callable, want to avoid calling tokenizer at startup
        session_tokenizer = gr.State(value=lambda : tokenizer) 

        with gr.Tab("Welcome"):
            with gr.Row():
                with gr.Column(scale=2):
                    gr.Markdown(
                        """
                        Potential harms of large language models can be mitigated by *watermarking* a model's output. 
                        *Watermarks* are embedded signals in the generated text that are invisible to humans but algorithmically 
                        detectable, that allow *anyone* to later check whether a given span of text 
                        was likely to have been generated by a model that uses the watermark.

                        This space showcases a watermarking approach that can be applied to _any_ generative language model. 
                        For demonstration purposes, the space demos a relatively small open-source language model. 
                        Such a model is less powerful than proprietary commercial tools like ChatGPT, Claude, or Gemini.
                        Generally, prompts that entail a short, low entropy response such as the few word answer to a factual trivia question,
                        will not exhibit a strong watermark presence, while longer watermarked outputs will produce higher detection statistics.
                        """
                        )
                    gr.Markdown(
                        """
                        **[Generate & Detect]**: The first tab shows that the watermark can be embedded with 
                        negligible impact on text quality. You can try any prompt and compare the quality of 
                        normal text (*Output Without Watermark*) to the watermarked text (*Output With Watermark*) below it. 
                        You can also "see" the watermark by looking at the **Highlighted** tab where the tokens are 
                        colored green or red depending on which list they are in.
                        Metrics on the right show that the watermark can be reliably detected given a reasonably small number of tokens (25-50).
                        Detection is very efficient and does not use the language model or its parameters.

                        **[Detector Only]**: You can also copy-paste the watermarked text (or any other text) 
                        into the second tab. This can be used to see how many sentences you could remove and still detect the watermark.  
                        You can also verify here that the detection has, by design, a low false-positive rate; 
                        This means that human-generated text that you copy into this detector will not be marked as machine-generated.

                        You can find more details about how this watermark functions in our paper ["A Watermark for Large Language Models"](https://arxiv.org/abs/2301.10226), presented at ICML 2023.
                        Additionally, read about our study on the reliabilty of this watermarking style in ["On the Reliability of Watermarks for Large Language Models"](https://arxiv.org/abs/2306.04634), presented at ICLR 2024.
                        """
                        )
                
                with gr.Column(scale=1):
                    gr.Markdown(
                        """
                        ![](https://drive.google.com/uc?export=view&id=1yVLPcjm-xvaCjQyc3FGLsWIU84v1QRoC)
                        """
                    )

        with gr.Tab("Generate & Detect"):
            
            with gr.Row():
                prompt = gr.Textbox(label=f"Prompt", interactive=True,lines=10,max_lines=10, value=default_prompt)
            with gr.Row():
                generate_btn = gr.Button("Generate")
            with gr.Row():
                with gr.Column(scale=2):
                    with gr.Tab("Output Without Watermark (Raw Text)"):
                        output_without_watermark = gr.Textbox(interactive=False,lines=14,max_lines=14)
                    with gr.Tab("Highlighted"):
                        html_without_watermark = gr.HTML(elem_id="html-without-watermark")
                with gr.Column(scale=1):
                    without_watermark_detection_result = gr.Dataframe(headers=["Metric", "Value"], interactive=False,row_count=7,col_count=2)
            with gr.Row():
                with gr.Column(scale=2):
                    with gr.Tab("Output With Watermark (Raw Text)"):
                        output_with_watermark = gr.Textbox(interactive=False,lines=14,max_lines=14)
                    with gr.Tab("Highlighted"):
                        html_with_watermark = gr.HTML(elem_id="html-with-watermark")
                with gr.Column(scale=1):
                    with_watermark_detection_result = gr.Dataframe(headers=["Metric", "Value"],interactive=False,row_count=7,col_count=2)

            redecoded_input = gr.Textbox(visible=False)
            truncation_warning = gr.Number(visible=False)
            def truncate_prompt(redecoded_input, truncation_warning, orig_prompt, args):
                if truncation_warning:
                    return redecoded_input + f"\n\n[Prompt was truncated before generation due to length...]", args
                else: 
                    return orig_prompt, args
        
        with gr.Tab("Detector Only"):
            with gr.Row():
                with gr.Column(scale=2):
                    with gr.Tab("Text to Analyze"):
                        detection_input = gr.Textbox(interactive=True,lines=14,max_lines=14)
                    with gr.Tab("Highlighted"):
                        html_detection_input = gr.HTML(elem_id="html-detection-input")
                with gr.Column(scale=1):
                    detection_result = gr.Dataframe(headers=["Metric", "Value"], interactive=False,row_count=7,col_count=2)
            with gr.Row():
                    detect_btn = gr.Button("Detect")

        # Parameter selection group
        with gr.Accordion("Advanced Settings",open=False):
            with gr.Row():
                with gr.Column(scale=1):
                    gr.Markdown(f"#### Generation Parameters")
                    with gr.Row():
                        decoding = gr.Radio(label="Decoding Method",choices=["multinomial", "greedy"], value=("multinomial" if args.use_sampling else "greedy"))
                    with gr.Row():
                        sampling_temp = gr.Slider(label="Sampling Temperature", minimum=0.1, maximum=1.0, step=0.1, value=args.sampling_temp, visible=True)
                    with gr.Row():
                        generation_seed = gr.Number(label="Generation Seed",value=args.generation_seed, interactive=True)
                    with gr.Row():
                        n_beams = gr.Dropdown(label="Number of Beams",choices=list(range(1,11,1)), value=args.n_beams, visible=((not args.use_sampling) and (not args.model_name_or_path in API_MODEL_MAP)))
                    with gr.Row():
                        max_new_tokens = gr.Slider(label="Max Generated Tokens", minimum=10, maximum=1000, step=10, value=args.max_new_tokens)

                with gr.Column(scale=1):
                    gr.Markdown(f"#### Watermark Parameters")
                    with gr.Row():
                        gamma = gr.Slider(label="gamma",minimum=0.1, maximum=0.9, step=0.05, value=args.gamma)
                    with gr.Row():
                        delta = gr.Slider(label="delta",minimum=0.0, maximum=10.0, step=0.1, value=args.delta)
                    gr.Markdown(f"#### Detector Parameters")
                    with gr.Row():
                        detection_z_threshold = gr.Slider(label="z-score threshold",minimum=0.0, maximum=10.0, step=0.1, value=args.detection_z_threshold)
                    with gr.Row():
                        ignore_repeated_bigrams = gr.Checkbox(label="Ignore Bigram Repeats")
                    with gr.Row():
                        normalizers = gr.CheckboxGroup(label="Normalizations", choices=["unicode", "homoglyphs", "truecase"], value=args.normalizers)
            with gr.Row():
                gr.Markdown(f"_Note: sliders don't always update perfectly. Clicking on the bar or using the number window to the right can help. Window below shows the current settings._")
            with gr.Row():
                current_parameters = gr.Textbox(label="Current Parameters", value=args)
            with gr.Accordion("Legacy Settings",open=False):
                with gr.Row():
                    with gr.Column(scale=1):
                        seed_separately = gr.Checkbox(label="Seed both generations separately", value=args.seed_separately)
                    with gr.Column(scale=1):
                        select_green_tokens = gr.Checkbox(label="Select 'greenlist' from partition", value=args.select_green_tokens)
        
        
        with gr.Accordion("What do the settings do?",open=False):
            gr.Markdown(
            """
            #### Generation Parameters:

            - **Decoding Method** : We can generate tokens from the model using either multinomial sampling or we can generate using greedy decoding.
            - **Sampling Temperature** : If using multinomial sampling we can set the temperature of the sampling distribution. 
                                0.0 is equivalent to greedy decoding, and 1.0 is the maximum amount of variability/entropy in the next token distribution.
                                0.7 strikes a nice balance between faithfulness to the model's estimate of top candidates while adding variety. Does not apply for greedy decoding.
            - **Generation Seed** : The integer to pass to the torch random number generator before running generation. Makes the multinomial sampling strategy
                                outputs reproducible. Does not apply for greedy decoding.
            - **Number of Beams** : When using greedy decoding, we can also set the number of beams to > 1 to enable beam search. 
                                This is not implemented/excluded from paper for multinomial sampling but may be added in future.
            - **Max Generated Tokens** : The `max_new_tokens` parameter passed to the generation method to stop the output at a certain number of new tokens. 
                                    Note that the model is free to generate fewer tokens depending on the prompt. 
                                    Implicitly this sets the maximum number of prompt tokens possible as the model's maximum input length minus `max_new_tokens`,
                                    and inputs will be truncated accordingly.
            
            #### Watermark Parameters:

            - **gamma** : The fraction of the vocabulary to be partitioned into the greenlist at each generation step. 
                     Smaller gamma values create a stronger watermark by enabling the watermarked model to achieve 
                     a greater differentiation from human/unwatermarked text because it is preferentially sampling 
                     from a smaller green set making those tokens less likely to occur by chance.
            - **delta** : The amount of positive bias to add to the logits of every token in the greenlist 
                        at each generation step before sampling/choosing the next token. Higher delta values 
                        mean that the greenlist tokens are more heavily preferred by the watermarked model
                        and as the bias becomes very large the watermark transitions from "soft" to "hard". 
                        For a hard watermark, nearly all tokens are green, but this can have a detrimental effect on
                        generation quality, especially when there is not a lot of flexibility in the distribution.

            #### Detector Parameters:
            
            - **z-score threshold** : the z-score cuttoff for the hypothesis test. Higher thresholds (such as 4.0) make
                                _false positives_ (predicting that human/unwatermarked text is watermarked) very unlikely
                                as a genuine human text with a significant number of tokens will almost never achieve 
                                that high of a z-score. Lower thresholds will capture more _true positives_ as some watermarked
                                texts will contain less green tokens and achive a lower z-score, but still pass the lower bar and 
                                be flagged as "watermarked". However, a lowere threshold will increase the chance that human text 
                                that contains a slightly higher than average number of green tokens is erroneously flagged. 
                                4.0-5.0 offers extremely low false positive rates while still accurately catching most watermarked text.
            - **Ignore Bigram Repeats** : This alternate detection algorithm only considers the unique bigrams in the text during detection, 
                                    computing the greenlists based on the first in each pair and checking whether the second falls within the list.
                                    This means that `T` is now the unique number of bigrams in the text, which becomes less than the total
                                    number of tokens generated if the text contains a lot of repetition. See the paper for a more detailed discussion.
            - **Normalizations** : we implement a few basic normaliations to defend against various adversarial perturbations of the
                                text analyzed during detection. Currently we support converting all chracters to unicode, 
                                replacing homoglyphs with a canonical form, and standardizing the capitalization. 
                                See the paper for a detailed discussion of input normalization. 
            """
            )
        
        with gr.Accordion("What do the output metrics mean?",open=False):
            gr.Markdown(
            """
            - `z-score threshold` : The cuttoff for the hypothesis test
            - `Tokens Counted (T)` : The number of tokens in the output that were counted by the detection algorithm. 
                The first token is ommitted in the simple, single token seeding scheme since there is no way to generate
                a greenlist for it as it has no prefix token(s). Under the "Ignore Bigram Repeats" detection algorithm, 
                described in the bottom panel, this can be much less than the total number of tokens generated if there is a lot of repetition.
            - `# Tokens in Greenlist` : The number of tokens that were observed to fall in their respective greenlist
            - `Fraction of T in Greenlist` : The `# Tokens in Greenlist` / `T`. This is expected to be approximately `gamma` for human/unwatermarked text.
            - `z-score` : The test statistic for the detection hypothesis test. If larger than the `z-score threshold` 
                we "reject the null hypothesis" that the text is human/unwatermarked, and conclude it is watermarked
            - `p value` : The likelihood of observing the computed `z-score` under the null hypothesis. This is the likelihood of 
                observing the `Fraction of T in Greenlist` given that the text was generated without knowledge of the watermark procedure/greenlists.
                If this is extremely _small_ we are confident that this many green tokens was not chosen by random chance.
            -  `prediction` : The outcome of the hypothesis test - whether the observed `z-score` was higher than the `z-score threshold`
            - `confidence` : If we reject the null hypothesis, and the `prediction` is "Watermarked", then we report 1-`p value` to represent 
                the confidence of the detection based on the unlikeliness of this `z-score` observation.
            """
            )

        gr.HTML("""
                <p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. 
                    Follow the github link at the top and host the demo on your own GPU hardware to test out larger models.
                <br/>
                <a href="https://huggingface.co/spaces/tomg-group-umd/lm-watermarking?duplicate=true">
                <img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
                <p/>
                """)
        
        # Register main generation tab click, outputing generations as well as a the encoded+redecoded+potentially truncated prompt and flag, then call detection
        generate_btn.click(fn=check_prompt_partial, inputs=[prompt,session_args,session_tokenizer], outputs=[redecoded_input, truncation_warning, session_args]).success(
                           fn=generate_partial, inputs=[redecoded_input,session_args,session_tokenizer], outputs=[output_without_watermark, output_with_watermark]).success(
                           fn=detect_partial, inputs=[output_without_watermark,session_args,session_tokenizer], outputs=[without_watermark_detection_result,session_args,session_tokenizer,html_without_watermark]).success(
                           fn=detect_partial, inputs=[output_with_watermark,session_args,session_tokenizer], outputs=[with_watermark_detection_result,session_args,session_tokenizer,html_with_watermark])
        # Show truncated version of prompt if truncation occurred
        redecoded_input.change(fn=truncate_prompt, inputs=[redecoded_input,truncation_warning,prompt,session_args], outputs=[prompt,session_args])
        # Register main detection tab click
        detect_btn.click(fn=detect_partial, inputs=[detection_input,session_args,session_tokenizer], outputs=[detection_result, session_args,session_tokenizer,html_detection_input], api_name="detection")

        # State management logic
        # define update callbacks that change the state dict
        def update_model(session_state, value): session_state.model_name_or_path = value; return session_state
        def update_sampling_temp(session_state, value): session_state.sampling_temp = float(value); return session_state
        def update_generation_seed(session_state, value): session_state.generation_seed = int(value); return session_state
        def update_gamma(session_state, value): session_state.gamma = float(value); return session_state
        def update_delta(session_state, value): session_state.delta = float(value); return session_state
        def update_detection_z_threshold(session_state, value): session_state.detection_z_threshold = float(value); return session_state
        def update_decoding(session_state, value):
            if value == "multinomial":
                session_state.use_sampling = True
            elif value == "greedy":
                session_state.use_sampling = False
            return session_state
        def toggle_sampling_vis(value):
            if value == "multinomial":
                return gr.update(visible=True)
            elif value == "greedy":
                return gr.update(visible=False)
        def toggle_sampling_vis_inv(value):
            if value == "multinomial":
                return gr.update(visible=False)
            elif value == "greedy":
                return gr.update(visible=True)
        # if model name is in the list of api models, set the num beams parameter to 1 and hide n_beams
        def toggle_vis_for_api_model(value):
            if value in API_MODEL_MAP:
                return gr.update(visible=False)
            else:
                return gr.update(visible=True)
        def toggle_beams_for_api_model(value, orig_n_beams):
            if value in API_MODEL_MAP:
                return gr.update(value=1)
            else:
                return gr.update(value=orig_n_beams)
        # if model name is in the list of api models, set the interactive parameter to false
        def toggle_interactive_for_api_model(value):
            if value in API_MODEL_MAP:
                return gr.update(interactive=False)
            else:
                return gr.update(interactive=True)
        # if model name is in the list of api models, set gamma and delta based on API map
        def toggle_gamma_for_api_model(value, orig_gamma):
            if value in API_MODEL_MAP:
                return gr.update(value=API_MODEL_MAP[value]["gamma"])
            else:
                return gr.update(value=orig_gamma)
        def toggle_delta_for_api_model(value, orig_delta):
            if value in API_MODEL_MAP:
                return gr.update(value=API_MODEL_MAP[value]["delta"])
            else:
                return gr.update(value=orig_delta)

        def update_n_beams(session_state, value): session_state.n_beams = value; return session_state
        def update_max_new_tokens(session_state, value): session_state.max_new_tokens = int(value); return session_state
        def update_ignore_repeated_bigrams(session_state, value): session_state.ignore_repeated_bigrams = value; return session_state
        def update_normalizers(session_state, value): session_state.normalizers = value; return session_state
        def update_seed_separately(session_state, value): session_state.seed_separately = value; return session_state
        def update_select_green_tokens(session_state, value): session_state.select_green_tokens = value; return session_state
        def update_tokenizer(model_name_or_path): 
            # if model_name_or_path == ALPACA_MODEL_NAME:
            #     return ALPACA_MODEL_TOKENIZER.from_pretrained(ALPACA_TOKENIZER_PATH)
            # else:
            return AutoTokenizer.from_pretrained(model_name_or_path)
        
        def check_model(value): return value if (value!="" and value is not None) else args.model_name_or_path
        # enforce constraint that model cannot be null or empty
        # then attach model callbacks in particular
        model_selector.change(check_model, inputs=[model_selector], outputs=[model_selector]).then(
            toggle_vis_for_api_model,inputs=[model_selector], outputs=[n_beams]
        ).then(
            toggle_beams_for_api_model,inputs=[model_selector,n_beams], outputs=[n_beams]
        ).then(
            toggle_interactive_for_api_model,inputs=[model_selector], outputs=[gamma]
        ).then(
            toggle_interactive_for_api_model,inputs=[model_selector], outputs=[delta]
        ).then(
            toggle_gamma_for_api_model,inputs=[model_selector,gamma], outputs=[gamma]
        ).then(
            toggle_delta_for_api_model,inputs=[model_selector,delta], outputs=[delta]
        ).then(
            update_tokenizer,inputs=[model_selector], outputs=[session_tokenizer]
        ).then(
            update_model,inputs=[session_args, model_selector], outputs=[session_args]
        ).then(
            lambda value: str(value), inputs=[session_args], outputs=[current_parameters]
        )
        # registering callbacks for toggling the visibilty of certain parameters based on the values of others
        decoding.change(toggle_sampling_vis,inputs=[decoding], outputs=[sampling_temp])
        decoding.change(toggle_sampling_vis,inputs=[decoding], outputs=[generation_seed])
        decoding.change(toggle_sampling_vis_inv,inputs=[decoding], outputs=[n_beams])
        decoding.change(toggle_vis_for_api_model,inputs=[model_selector], outputs=[n_beams])
        # registering all state update callbacks
        decoding.change(update_decoding,inputs=[session_args, decoding], outputs=[session_args])
        sampling_temp.change(update_sampling_temp,inputs=[session_args, sampling_temp], outputs=[session_args])
        generation_seed.change(update_generation_seed,inputs=[session_args, generation_seed], outputs=[session_args])
        n_beams.change(update_n_beams,inputs=[session_args, n_beams], outputs=[session_args])
        max_new_tokens.change(update_max_new_tokens,inputs=[session_args, max_new_tokens], outputs=[session_args])
        gamma.change(update_gamma,inputs=[session_args, gamma], outputs=[session_args])
        delta.change(update_delta,inputs=[session_args, delta], outputs=[session_args])
        detection_z_threshold.change(update_detection_z_threshold,inputs=[session_args, detection_z_threshold], outputs=[session_args])
        ignore_repeated_bigrams.change(update_ignore_repeated_bigrams,inputs=[session_args, ignore_repeated_bigrams], outputs=[session_args])
        normalizers.change(update_normalizers,inputs=[session_args, normalizers], outputs=[session_args])
        seed_separately.change(update_seed_separately,inputs=[session_args, seed_separately], outputs=[session_args])
        select_green_tokens.change(update_select_green_tokens,inputs=[session_args, select_green_tokens], outputs=[session_args])
        # register additional callback on button clicks that updates the shown parameters window
        generate_btn.click(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
        detect_btn.click(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
        # When the parameters change, display the update and also fire detection, since some detection params dont change the model output.
        delta.change(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
        gamma.change(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
        gamma.change(fn=detect_partial, inputs=[output_without_watermark,session_args,session_tokenizer], outputs=[without_watermark_detection_result,session_args,session_tokenizer,html_without_watermark])
        gamma.change(fn=detect_partial, inputs=[output_with_watermark,session_args,session_tokenizer], outputs=[with_watermark_detection_result,session_args,session_tokenizer,html_with_watermark])
        gamma.change(fn=detect_partial, inputs=[detection_input,session_args,session_tokenizer], outputs=[detection_result,session_args,session_tokenizer,html_detection_input])
        detection_z_threshold.change(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
        detection_z_threshold.change(fn=detect_partial, inputs=[output_without_watermark,session_args,session_tokenizer], outputs=[without_watermark_detection_result,session_args,session_tokenizer,html_without_watermark])
        detection_z_threshold.change(fn=detect_partial, inputs=[output_with_watermark,session_args,session_tokenizer], outputs=[with_watermark_detection_result,session_args,session_tokenizer,html_with_watermark])
        detection_z_threshold.change(fn=detect_partial, inputs=[detection_input,session_args,session_tokenizer], outputs=[detection_result,session_args,session_tokenizer,html_detection_input])
        ignore_repeated_bigrams.change(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
        ignore_repeated_bigrams.change(fn=detect_partial, inputs=[output_without_watermark,session_args,session_tokenizer], outputs=[without_watermark_detection_result,session_args,session_tokenizer,html_without_watermark])
        ignore_repeated_bigrams.change(fn=detect_partial, inputs=[output_with_watermark,session_args,session_tokenizer], outputs=[with_watermark_detection_result,session_args,session_tokenizer,html_with_watermark])
        ignore_repeated_bigrams.change(fn=detect_partial, inputs=[detection_input,session_args,session_tokenizer], outputs=[detection_result,session_args,session_tokenizer,html_detection_input])
        normalizers.change(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
        normalizers.change(fn=detect_partial, inputs=[output_without_watermark,session_args,session_tokenizer], outputs=[without_watermark_detection_result,session_args,session_tokenizer,html_without_watermark])
        normalizers.change(fn=detect_partial, inputs=[output_with_watermark,session_args,session_tokenizer], outputs=[with_watermark_detection_result,session_args,session_tokenizer,html_with_watermark])
        normalizers.change(fn=detect_partial, inputs=[detection_input,session_args,session_tokenizer], outputs=[detection_result,session_args,session_tokenizer,html_detection_input])
        select_green_tokens.change(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
        select_green_tokens.change(fn=detect_partial, inputs=[output_without_watermark,session_args,session_tokenizer], outputs=[without_watermark_detection_result,session_args,session_tokenizer,html_without_watermark])
        select_green_tokens.change(fn=detect_partial, inputs=[output_with_watermark,session_args,session_tokenizer], outputs=[with_watermark_detection_result,session_args,session_tokenizer,html_with_watermark])
        select_green_tokens.change(fn=detect_partial, inputs=[detection_input,session_args,session_tokenizer], outputs=[detection_result,session_args,session_tokenizer,html_detection_input])

    # demo.queue(concurrency_count=3)
    demo.queue()

    if args.demo_public:
        demo.launch(share=True) # exposes app to the internet via randomly generated link
    else:
        demo.launch()

def main(args): 
    """Run a command line version of the generation and detection operations
        and optionally launch and serve the gradio demo"""
    # Initial arg processing and log
    args.normalizers = (args.normalizers.split(",") if args.normalizers else [])
    print(args)

    if not args.skip_model_load:
        model, tokenizer, device = load_model(args)
    else:
        model, tokenizer, device = None, None, None
        tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path)
        if args.use_gpu:
            device = "cuda" if torch.cuda.is_available() else "cpu"
        else:
            device = "cpu"

    
    # terrapin example
    input_text = (
        "The diamondback terrapin or simply terrapin (Malaclemys terrapin) is a "
        "species of turtle native to the brackish coastal tidal marshes of the "
        "Northeastern and southern United States, and in Bermuda.[6] It belongs "
        "to the monotypic genus Malaclemys. It has one of the largest ranges of "
        "all turtles in North America, stretching as far south as the Florida Keys "
        "and as far north as Cape Cod.[7] The name 'terrapin' is derived from the "
        "Algonquian word torope.[8] It applies to Malaclemys terrapin in both "
        "British English and American English. The name originally was used by "
        "early European settlers in North America to describe these brackish-water "
        "turtles that inhabited neither freshwater habitats nor the sea. It retains "
        "this primary meaning in American English.[8] In British English, however, "
        "other semi-aquatic turtle species, such as the red-eared slider, might "
        "also be called terrapins. The common name refers to the diamond pattern "
        "on top of its shell (carapace), but the overall pattern and coloration "
        "vary greatly. The shell is usually wider at the back than in the front, "
        "and from above it appears wedge-shaped. The shell coloring can vary "
        "from brown to grey, and its body color can be grey, brown, yellow, "
        "or white. All have a unique pattern of wiggly, black markings or spots "
        "on their body and head. The diamondback terrapin has large webbed "
        "feet.[9] The species is"
    )

    args.default_prompt = input_text
    

    # Generate and detect, report to stdout
    if not args.skip_model_load:

        term_width = 80
        print("#"*term_width)
        print("Prompt:")
        print(input_text)

        # a generator that yields (without_watermark, with_watermark) pairs
        generator_outputs = generate(input_text, 
                                    args, 
                                    model=model, 
                                    device=device, 
                                    tokenizer=tokenizer)
        # we need to iterate over it, 
        # but we only want the last output in this case
        for out in generator_outputs:
            decoded_output_without_watermark = out[0]
            decoded_output_with_watermark = out[1]

        without_watermark_detection_result = detect(decoded_output_without_watermark, 
                                                    args, 
                                                    device=device, 
                                                    tokenizer=tokenizer,
                                                    return_green_token_mask=False)
        with_watermark_detection_result = detect(decoded_output_with_watermark, 
                                                 args, 
                                                 device=device, 
                                                 tokenizer=tokenizer,
                                                 return_green_token_mask=False)

        print("#"*term_width)
        print("Output without watermark:")
        print(decoded_output_without_watermark)
        print("-"*term_width)
        print(f"Detection result @ {args.detection_z_threshold}:")
        pprint(without_watermark_detection_result)
        print("-"*term_width)

        print("#"*term_width)
        print("Output with watermark:")
        print(decoded_output_with_watermark)
        print("-"*term_width)
        print(f"Detection result @ {args.detection_z_threshold}:")
        pprint(with_watermark_detection_result)
        print("-"*term_width)


    # Launch the app to generate and detect interactively (implements the hf space demo)
    if args.run_gradio:
        run_gradio(args, model=model, tokenizer=tokenizer, device=device)

    return

if __name__ == "__main__":

    args = parse_args()
    print(args)

    main(args)