import math import numbers import random import cv2 import numpy as np from PIL import Image from torchvision import transforms from torchvision.transforms import Compose def sample_asym(magnitude, size=None): return np.random.beta(1, 4, size) * magnitude def sample_sym(magnitude, size=None): return (np.random.beta(4, 4, size=size) - 0.5) * 2 * magnitude def sample_uniform(low, high, size=None): return np.random.uniform(low, high, size=size) def get_interpolation(type='random'): if type == 'random': choice = [cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA] interpolation = choice[random.randint(0, len(choice)-1)] elif type == 'nearest': interpolation = cv2.INTER_NEAREST elif type == 'linear': interpolation = cv2.INTER_LINEAR elif type == 'cubic': interpolation = cv2.INTER_CUBIC elif type == 'area': interpolation = cv2.INTER_AREA else: raise TypeError('Interpolation types only nearest, linear, cubic, area are supported!') return interpolation class CVRandomRotation(object): def __init__(self, degrees=15): assert isinstance(degrees, numbers.Number), "degree should be a single number." assert degrees >= 0, "degree must be positive." self.degrees = degrees @staticmethod def get_params(degrees): return sample_sym(degrees) def __call__(self, img): angle = self.get_params(self.degrees) src_h, src_w = img.shape[:2] M = cv2.getRotationMatrix2D(center=(src_w/2, src_h/2), angle=angle, scale=1.0) abs_cos, abs_sin = abs(M[0,0]), abs(M[0,1]) dst_w = int(src_h * abs_sin + src_w * abs_cos) dst_h = int(src_h * abs_cos + src_w * abs_sin) M[0, 2] += (dst_w - src_w)/2 M[1, 2] += (dst_h - src_h)/2 flags = get_interpolation() return cv2.warpAffine(img, M, (dst_w, dst_h), flags=flags, borderMode=cv2.BORDER_REPLICATE) class CVRandomAffine(object): def __init__(self, degrees, translate=None, scale=None, shear=None): assert isinstance(degrees, numbers.Number), "degree should be a single number." assert degrees >= 0, "degree must be positive." self.degrees = degrees if translate is not None: assert isinstance(translate, (tuple, list)) and len(translate) == 2, \ "translate should be a list or tuple and it must be of length 2." for t in translate: if not (0.0 <= t <= 1.0): raise ValueError("translation values should be between 0 and 1") self.translate = translate if scale is not None: assert isinstance(scale, (tuple, list)) and len(scale) == 2, \ "scale should be a list or tuple and it must be of length 2." for s in scale: if s <= 0: raise ValueError("scale values should be positive") self.scale = scale if shear is not None: if isinstance(shear, numbers.Number): if shear < 0: raise ValueError("If shear is a single number, it must be positive.") self.shear = [shear] else: assert isinstance(shear, (tuple, list)) and (len(shear) == 2), \ "shear should be a list or tuple and it must be of length 2." self.shear = shear else: self.shear = shear def _get_inverse_affine_matrix(self, center, angle, translate, scale, shear): # https://github.com/pytorch/vision/blob/v0.4.0/torchvision/transforms/functional.py#L717 from numpy import sin, cos, tan if isinstance(shear, numbers.Number): shear = [shear, 0] if not isinstance(shear, (tuple, list)) and len(shear) == 2: raise ValueError( "Shear should be a single value or a tuple/list containing " + "two values. Got {}".format(shear)) rot = math.radians(angle) sx, sy = [math.radians(s) for s in shear] cx, cy = center tx, ty = translate # RSS without scaling a = cos(rot - sy) / cos(sy) b = -cos(rot - sy) * tan(sx) / cos(sy) - sin(rot) c = sin(rot - sy) / cos(sy) d = -sin(rot - sy) * tan(sx) / cos(sy) + cos(rot) # Inverted rotation matrix with scale and shear # det([[a, b], [c, d]]) == 1, since det(rotation) = 1 and det(shear) = 1 M = [d, -b, 0, -c, a, 0] M = [x / scale for x in M] # Apply inverse of translation and of center translation: RSS^-1 * C^-1 * T^-1 M[2] += M[0] * (-cx - tx) + M[1] * (-cy - ty) M[5] += M[3] * (-cx - tx) + M[4] * (-cy - ty) # Apply center translation: C * RSS^-1 * C^-1 * T^-1 M[2] += cx M[5] += cy return M @staticmethod def get_params(degrees, translate, scale_ranges, shears, height): angle = sample_sym(degrees) if translate is not None: max_dx = translate[0] * height max_dy = translate[1] * height translations = (np.round(sample_sym(max_dx)), np.round(sample_sym(max_dy))) else: translations = (0, 0) if scale_ranges is not None: scale = sample_uniform(scale_ranges[0], scale_ranges[1]) else: scale = 1.0 if shears is not None: if len(shears) == 1: shear = [sample_sym(shears[0]), 0.] elif len(shears) == 2: shear = [sample_sym(shears[0]), sample_sym(shears[1])] else: shear = 0.0 return angle, translations, scale, shear def __call__(self, img): src_h, src_w = img.shape[:2] angle, translate, scale, shear = self.get_params( self.degrees, self.translate, self.scale, self.shear, src_h) M = self._get_inverse_affine_matrix((src_w/2, src_h/2), angle, (0, 0), scale, shear) M = np.array(M).reshape(2,3) startpoints = [(0, 0), (src_w - 1, 0), (src_w - 1, src_h - 1), (0, src_h - 1)] project = lambda x, y, a, b, c: int(a*x + b*y + c) endpoints = [(project(x, y, *M[0]), project(x, y, *M[1])) for x, y in startpoints] rect = cv2.minAreaRect(np.array(endpoints)) bbox = cv2.boxPoints(rect).astype(dtype=np.int) max_x, max_y = bbox[:, 0].max(), bbox[:, 1].max() min_x, min_y = bbox[:, 0].min(), bbox[:, 1].min() dst_w = int(max_x - min_x) dst_h = int(max_y - min_y) M[0, 2] += (dst_w - src_w) / 2 M[1, 2] += (dst_h - src_h) / 2 # add translate dst_w += int(abs(translate[0])) dst_h += int(abs(translate[1])) if translate[0] < 0: M[0, 2] += abs(translate[0]) if translate[1] < 0: M[1, 2] += abs(translate[1]) flags = get_interpolation() return cv2.warpAffine(img, M, (dst_w , dst_h), flags=flags, borderMode=cv2.BORDER_REPLICATE) class CVRandomPerspective(object): def __init__(self, distortion=0.5): self.distortion = distortion def get_params(self, width, height, distortion): offset_h = sample_asym(distortion * height / 2, size=4).astype(dtype=np.int) offset_w = sample_asym(distortion * width / 2, size=4).astype(dtype=np.int) topleft = ( offset_w[0], offset_h[0]) topright = (width - 1 - offset_w[1], offset_h[1]) botright = (width - 1 - offset_w[2], height - 1 - offset_h[2]) botleft = ( offset_w[3], height - 1 - offset_h[3]) startpoints = [(0, 0), (width - 1, 0), (width - 1, height - 1), (0, height - 1)] endpoints = [topleft, topright, botright, botleft] return np.array(startpoints, dtype=np.float32), np.array(endpoints, dtype=np.float32) def __call__(self, img): height, width = img.shape[:2] startpoints, endpoints = self.get_params(width, height, self.distortion) M = cv2.getPerspectiveTransform(startpoints, endpoints) # TODO: more robust way to crop image rect = cv2.minAreaRect(endpoints) bbox = cv2.boxPoints(rect).astype(dtype=np.int) max_x, max_y = bbox[:, 0].max(), bbox[:, 1].max() min_x, min_y = bbox[:, 0].min(), bbox[:, 1].min() min_x, min_y = max(min_x, 0), max(min_y, 0) flags = get_interpolation() img = cv2.warpPerspective(img, M, (max_x, max_y), flags=flags, borderMode=cv2.BORDER_REPLICATE) img = img[min_y:, min_x:] return img class CVRescale(object): def __init__(self, factor=4, base_size=(128, 512)): """ Define image scales using gaussian pyramid and rescale image to target scale. Args: factor: the decayed factor from base size, factor=4 keeps target scale by default. base_size: base size the build the bottom layer of pyramid """ if isinstance(factor, numbers.Number): self.factor = round(sample_uniform(0, factor)) elif isinstance(factor, (tuple, list)) and len(factor) == 2: self.factor = round(sample_uniform(factor[0], factor[1])) else: raise Exception('factor must be number or list with length 2') # assert factor is valid self.base_h, self.base_w = base_size[:2] def __call__(self, img): if self.factor == 0: return img src_h, src_w = img.shape[:2] cur_w, cur_h = self.base_w, self.base_h scale_img = cv2.resize(img, (cur_w, cur_h), interpolation=get_interpolation()) for _ in range(self.factor): scale_img = cv2.pyrDown(scale_img) scale_img = cv2.resize(scale_img, (src_w, src_h), interpolation=get_interpolation()) return scale_img class CVGaussianNoise(object): def __init__(self, mean=0, var=20): self.mean = mean if isinstance(var, numbers.Number): self.var = max(int(sample_asym(var)), 1) elif isinstance(var, (tuple, list)) and len(var) == 2: self.var = int(sample_uniform(var[0], var[1])) else: raise Exception('degree must be number or list with length 2') def __call__(self, img): noise = np.random.normal(self.mean, self.var**0.5, img.shape) img = np.clip(img + noise, 0, 255).astype(np.uint8) return img class CVMotionBlur(object): def __init__(self, degrees=12, angle=90): if isinstance(degrees, numbers.Number): self.degree = max(int(sample_asym(degrees)), 1) elif isinstance(degrees, (tuple, list)) and len(degrees) == 2: self.degree = int(sample_uniform(degrees[0], degrees[1])) else: raise Exception('degree must be number or list with length 2') self.angle = sample_uniform(-angle, angle) def __call__(self, img): M = cv2.getRotationMatrix2D((self.degree // 2, self.degree // 2), self.angle, 1) motion_blur_kernel = np.zeros((self.degree, self.degree)) motion_blur_kernel[self.degree // 2, :] = 1 motion_blur_kernel = cv2.warpAffine(motion_blur_kernel, M, (self.degree, self.degree)) motion_blur_kernel = motion_blur_kernel / self.degree img = cv2.filter2D(img, -1, motion_blur_kernel) img = np.clip(img, 0, 255).astype(np.uint8) return img class CVGeometry(object): def __init__(self, degrees=15, translate=(0.3, 0.3), scale=(0.5, 2.), shear=(45, 15), distortion=0.5, p=0.5): self.p = p type_p = random.random() if type_p < 0.33: self.transforms = CVRandomRotation(degrees=degrees) elif type_p < 0.66: self.transforms = CVRandomAffine(degrees=degrees, translate=translate, scale=scale, shear=shear) else: self.transforms = CVRandomPerspective(distortion=distortion) def __call__(self, img): if random.random() < self.p: img = np.array(img) return Image.fromarray(self.transforms(img)) else: return img class CVDeterioration(object): def __init__(self, var, degrees, factor, p=0.5): self.p = p transforms = [] if var is not None: transforms.append(CVGaussianNoise(var=var)) if degrees is not None: transforms.append(CVMotionBlur(degrees=degrees)) if factor is not None: transforms.append(CVRescale(factor=factor)) random.shuffle(transforms) transforms = Compose(transforms) self.transforms = transforms def __call__(self, img): if random.random() < self.p: img = np.array(img) return Image.fromarray(self.transforms(img)) else: return img class CVColorJitter(object): def __init__(self, brightness=0.5, contrast=0.5, saturation=0.5, hue=0.1, p=0.5): self.p = p self.transforms = transforms.ColorJitter(brightness=brightness, contrast=contrast, saturation=saturation, hue=hue) def __call__(self, img): if random.random() < self.p: return self.transforms(img) else: return img