from fastai.vision import * from modules.model import Model class MultiLosses(nn.Module): def __init__(self, one_hot=True): super().__init__() self.ce = SoftCrossEntropyLoss() if one_hot else torch.nn.CrossEntropyLoss() self.bce = torch.nn.BCELoss() @property def last_losses(self): return self.losses def _flatten(self, sources, lengths): return torch.cat([t[:l] for t, l in zip(sources, lengths)]) def _merge_list(self, all_res): if not isinstance(all_res, (list, tuple)): return all_res def merge(items): if isinstance(items[0], torch.Tensor): return torch.cat(items, dim=0) else: return items[0] res = dict() for key in all_res[0].keys(): items = [r[key] for r in all_res] res[key] = merge(items) return res def _ce_loss(self, output, gt_labels, gt_lengths, idx=None, record=True): loss_name = output.get('name') pt_logits, weight = output['logits'], output['loss_weight'] assert pt_logits.shape[0] % gt_labels.shape[0] == 0 iter_size = pt_logits.shape[0] // gt_labels.shape[0] if iter_size > 1: gt_labels = gt_labels.repeat(3, 1, 1) gt_lengths = gt_lengths.repeat(3) flat_gt_labels = self._flatten(gt_labels, gt_lengths) flat_pt_logits = self._flatten(pt_logits, gt_lengths) nll = output.get('nll') if nll is not None: loss = self.ce(flat_pt_logits, flat_gt_labels, softmax=False) * weight else: loss = self.ce(flat_pt_logits, flat_gt_labels) * weight if record and loss_name is not None: self.losses[f'{loss_name}_loss'] = loss return loss def forward(self, outputs, *args): self.losses = {} if isinstance(outputs, (tuple, list)): outputs = [self._merge_list(o) for o in outputs] return sum([self._ce_loss(o, *args) for o in outputs if o['loss_weight'] > 0.]) else: return self._ce_loss(outputs, *args, record=False) class SoftCrossEntropyLoss(nn.Module): def __init__(self, reduction="mean"): super().__init__() self.reduction = reduction def forward(self, input, target, softmax=True): if softmax: log_prob = F.log_softmax(input, dim=-1) else: log_prob = torch.log(input) loss = -(target * log_prob).sum(dim=-1) if self.reduction == "mean": return loss.mean() elif self.reduction == "sum": return loss.sum() else: return loss