import logging import torch.nn as nn from fastai.vision import * from modules.attention import * from modules.backbone import ResTranformer from modules.model import Model from modules.resnet import resnet45 class BaseVision(Model): def __init__(self, config): super().__init__(config) self.loss_weight = ifnone(config.model_vision_loss_weight, 1.0) self.out_channels = ifnone(config.model_vision_d_model, 512) if config.model_vision_backbone == 'transformer': self.backbone = ResTranformer(config) else: self.backbone = resnet45() if config.model_vision_attention == 'position': mode = ifnone(config.model_vision_attention_mode, 'nearest') self.attention = PositionAttention( max_length=config.dataset_max_length + 1, # additional stop token mode=mode, ) elif config.model_vision_attention == 'attention': self.attention = Attention( max_length=config.dataset_max_length + 1, # additional stop token n_feature=8*32, ) else: raise Exception(f'{config.model_vision_attention} is not valid.') self.cls = nn.Linear(self.out_channels, self.charset.num_classes) if config.model_vision_checkpoint is not None: logging.info(f'Read vision model from {config.model_vision_checkpoint}.') self.load(config.model_vision_checkpoint) def forward(self, images, *args): features = self.backbone(images) # (N, E, H, W) attn_vecs, attn_scores = self.attention(features) # (N, T, E), (N, T, H, W) logits = self.cls(attn_vecs) # (N, T, C) pt_lengths = self._get_length(logits) return {'feature': attn_vecs, 'logits': logits, 'pt_lengths': pt_lengths, 'attn_scores': attn_scores, 'loss_weight':self.loss_weight, 'name': 'vision'}