File size: 2,292 Bytes
c310e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
MODEL:
  META_ARCHITECTURE: "GeneralizedRCNN"
  WEIGHT: "catalog://ImageNetPretrained/MSRA/R-50"
  BACKBONE:
    CONV_BODY: "R-50-FPN"
    OUT_CHANNELS: 256
  RESNETS:
    BACKBONE_OUT_CHANNELS: 256
  RPN:
    USE_FPN: True
    ANCHOR_STRIDE: (4, 8, 16, 32, 64)
    PRE_NMS_TOP_N_TRAIN: 2000
    PRE_NMS_TOP_N_TEST: 1000
    POST_NMS_TOP_N_TEST: 1000
    FPN_POST_NMS_TOP_N_TEST: 1000
  SEG:
    USE_FPN: True
    USE_FUSE_FEATURE: True
    TOP_N_TRAIN: 1000
    TOP_N_TEST: 1000
    BINARY_THRESH: 0.1
    BOX_THRESH: 0.1
    MIN_SIZE: 5
    SHRINK_RATIO: 0.4
    EXPAND_RATIO: 3.0
  ROI_HEADS:
    USE_FPN: True
    BATCH_SIZE_PER_IMAGE: 512
  ROI_BOX_HEAD:
    POOLER_RESOLUTION: 7
    POOLER_SCALES: (0.25,)
    POOLER_SAMPLING_RATIO: 2
    FEATURE_EXTRACTOR: "FPN2MLPFeatureExtractor"
    PREDICTOR: "FPNPredictor"
    NUM_CLASSES: 2
    USE_MASKED_FEATURE: True
  ROI_MASK_HEAD:
    POOLER_SCALES: (0.25,)
    FEATURE_EXTRACTOR: "MaskRCNNFPNFeatureExtractor"
    PREDICTOR: "SeqCharMaskRCNNC4Predictor"
    POOLER_RESOLUTION: 14
    POOLER_RESOLUTION_H: 32
    POOLER_RESOLUTION_W: 32
    POOLER_SAMPLING_RATIO: 2
    RESOLUTION: 28
    RESOLUTION_H: 64
    RESOLUTION_W: 64
    SHARE_BOX_FEATURE_EXTRACTOR: False
    CHAR_NUM_CLASSES: 37
    USE_WEIGHTED_CHAR_MASK: True
    MASK_BATCH_SIZE_PER_IM: 64
    USE_MASKED_FEATURE: True
  MASK_ON: True
  CHAR_MASK_ON: True
  SEG_ON: True
SEQUENCE:
  SEQ_ON: True
  NUM_CHAR: 38
  BOS_TOKEN: 0
  MAX_LENGTH: 32
  TEACHER_FORCE_RATIO: 1.0
DATASETS:
  TRAIN: ("synthtext_train",)
  # TRAIN: ("synthtext_train","icdar_2013_train","icdar_2015_train","scut-eng-char_train","total_text_train")
  # RATIOS: [0.25,0.25,0.25,0.125,0.125]
  TEST: ("icdar_2015_test",)
  # TEST: ("total_text_test",)
  AUG: True
  IGNORE_DIFFICULT: True
  MAX_ROTATE_THETA: 90
DATALOADER:
  SIZE_DIVISIBILITY: 32
  NUM_WORKERS: 4
  ASPECT_RATIO_GROUPING: False
SOLVER:
  BASE_LR: 0.02 #0.02
  WARMUP_FACTOR: 0.1
  WEIGHT_DECAY: 0.0001
  STEPS: (100000, 200000)
  MAX_ITER: 300000
  IMS_PER_BATCH: 8
  RESUME: True
  DISPLAY_FREQ: 20
OUTPUT_DIR: "./output/pretrain"
TEST:
  VIS: False
  CHAR_THRESH: 192
  IMS_PER_BATCH: 1
INPUT:
  MIN_SIZE_TRAIN: (600, 800)
  # MIN_SIZE_TRAIN: (800, 1000, 1200, 1400)
  MAX_SIZE_TRAIN: 2333
  MIN_SIZE_TEST: 1440
  MAX_SIZE_TEST: 4000