File size: 7,941 Bytes
c310e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
#include "cpu/vision.h"

// implementation taken from Caffe2
template <typename T>
struct PreCalc {
  int pos1;
  int pos2;
  int pos3;
  int pos4;
  T w1;
  T w2;
  T w3;
  T w4;
};

template <typename T>
void pre_calc_for_bilinear_interpolate(
    const int height,
    const int width,
    const int pooled_height,
    const int pooled_width,
    const int iy_upper,
    const int ix_upper,
    T roi_start_h,
    T roi_start_w,
    T bin_size_h,
    T bin_size_w,
    int roi_bin_grid_h,
    int roi_bin_grid_w,
    std::vector<PreCalc<T>>& pre_calc) {
  int pre_calc_index = 0;
  for (int ph = 0; ph < pooled_height; ph++) {
    for (int pw = 0; pw < pooled_width; pw++) {
      for (int iy = 0; iy < iy_upper; iy++) {
        const T yy = roi_start_h + ph * bin_size_h +
            static_cast<T>(iy + .5f) * bin_size_h /
                static_cast<T>(roi_bin_grid_h); // e.g., 0.5, 1.5
        for (int ix = 0; ix < ix_upper; ix++) {
          const T xx = roi_start_w + pw * bin_size_w +
              static_cast<T>(ix + .5f) * bin_size_w /
                  static_cast<T>(roi_bin_grid_w);

          T x = xx;
          T y = yy;
          // deal with: inverse elements are out of feature map boundary
          if (y < -1.0 || y > height || x < -1.0 || x > width) {
            // empty
            PreCalc<T> pc;
            pc.pos1 = 0;
            pc.pos2 = 0;
            pc.pos3 = 0;
            pc.pos4 = 0;
            pc.w1 = 0;
            pc.w2 = 0;
            pc.w3 = 0;
            pc.w4 = 0;
            pre_calc[pre_calc_index] = pc;
            pre_calc_index += 1;
            continue;
          }

          if (y <= 0) {
            y = 0;
          }
          if (x <= 0) {
            x = 0;
          }

          int y_low = (int)y;
          int x_low = (int)x;
          int y_high;
          int x_high;

          if (y_low >= height - 1) {
            y_high = y_low = height - 1;
            y = (T)y_low;
          } else {
            y_high = y_low + 1;
          }

          if (x_low >= width - 1) {
            x_high = x_low = width - 1;
            x = (T)x_low;
          } else {
            x_high = x_low + 1;
          }

          T ly = y - y_low;
          T lx = x - x_low;
          T hy = 1. - ly, hx = 1. - lx;
          T w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;

          // save weights and indices
          PreCalc<T> pc;
          pc.pos1 = y_low * width + x_low;
          pc.pos2 = y_low * width + x_high;
          pc.pos3 = y_high * width + x_low;
          pc.pos4 = y_high * width + x_high;
          pc.w1 = w1;
          pc.w2 = w2;
          pc.w3 = w3;
          pc.w4 = w4;
          pre_calc[pre_calc_index] = pc;

          pre_calc_index += 1;
        }
      }
    }
  }
}

template <typename T>
void ROIAlignForward_cpu_kernel(
    const int nthreads,
    const T* bottom_data,
    const T& spatial_scale,
    const int channels,
    const int height,
    const int width,
    const int pooled_height,
    const int pooled_width,
    const int sampling_ratio,
    const T* bottom_rois,
    //int roi_cols,
    T* top_data) {
  //AT_ASSERT(roi_cols == 4 || roi_cols == 5);
  int roi_cols = 5;

  int n_rois = nthreads / channels / pooled_width / pooled_height;
  // (n, c, ph, pw) is an element in the pooled output
  // can be parallelized using omp
  // #pragma omp parallel for num_threads(32)
  for (int n = 0; n < n_rois; n++) {
    int index_n = n * channels * pooled_width * pooled_height;

    // roi could have 4 or 5 columns
    const T* offset_bottom_rois = bottom_rois + n * roi_cols;
    int roi_batch_ind = 0;
    if (roi_cols == 5) {
      roi_batch_ind = offset_bottom_rois[0];
      offset_bottom_rois++;
    }

    // Do not using rounding; this implementation detail is critical
    T roi_start_w = offset_bottom_rois[0] * spatial_scale;
    T roi_start_h = offset_bottom_rois[1] * spatial_scale;
    T roi_end_w = offset_bottom_rois[2] * spatial_scale;
    T roi_end_h = offset_bottom_rois[3] * spatial_scale;
    // T roi_start_w = round(offset_bottom_rois[0] * spatial_scale);
    // T roi_start_h = round(offset_bottom_rois[1] * spatial_scale);
    // T roi_end_w = round(offset_bottom_rois[2] * spatial_scale);
    // T roi_end_h = round(offset_bottom_rois[3] * spatial_scale);

    // Force malformed ROIs to be 1x1
    T roi_width = std::max(roi_end_w - roi_start_w, (T)1.);
    T roi_height = std::max(roi_end_h - roi_start_h, (T)1.);
    T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
    T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);

    // We use roi_bin_grid to sample the grid and mimic integral
    int roi_bin_grid_h = (sampling_ratio > 0)
        ? sampling_ratio
        : ceil(roi_height / pooled_height); // e.g., = 2
    int roi_bin_grid_w =
        (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);

    // We do average (integral) pooling inside a bin
    const T count = roi_bin_grid_h * roi_bin_grid_w; // e.g. = 4

    // we want to precalculate indices and weights shared by all channels,
    // this is the key point of optimization
    std::vector<PreCalc<T>> pre_calc(
        roi_bin_grid_h * roi_bin_grid_w * pooled_width * pooled_height);
    pre_calc_for_bilinear_interpolate(
        height,
        width,
        pooled_height,
        pooled_width,
        roi_bin_grid_h,
        roi_bin_grid_w,
        roi_start_h,
        roi_start_w,
        bin_size_h,
        bin_size_w,
        roi_bin_grid_h,
        roi_bin_grid_w,
        pre_calc);

      for (int c = 0; c < channels; c++) {
      int index_n_c = index_n + c * pooled_width * pooled_height;
      const T* offset_bottom_data =
          bottom_data + (roi_batch_ind * channels + c) * height * width;
      int pre_calc_index = 0;

      for (int ph = 0; ph < pooled_height; ph++) {
        for (int pw = 0; pw < pooled_width; pw++) {
          int index = index_n_c + ph * pooled_width + pw;

          T output_val = 0.;
          for (int iy = 0; iy < roi_bin_grid_h; iy++) {
            for (int ix = 0; ix < roi_bin_grid_w; ix++) {
              PreCalc<T> pc = pre_calc[pre_calc_index];
              output_val += pc.w1 * offset_bottom_data[pc.pos1] +
                  pc.w2 * offset_bottom_data[pc.pos2] +
                  pc.w3 * offset_bottom_data[pc.pos3] +
                  pc.w4 * offset_bottom_data[pc.pos4];

              pre_calc_index += 1;
            }
          }
          output_val /= count;

          top_data[index] = output_val;
        } // for pw
      } // for ph
    } // for c
  } // for n
}

at::Tensor ROIAlign_forward_cpu(const at::Tensor& input,
                                const at::Tensor& rois,
                                const float spatial_scale,
                                const int pooled_height,
                                const int pooled_width,
                                const int sampling_ratio) {
  AT_ASSERTM(!input.type().is_cuda(), "input must be a CPU tensor");
  AT_ASSERTM(!rois.type().is_cuda(), "rois must be a CPU tensor");

  auto num_rois = rois.size(0);
  auto channels = input.size(1);
  auto height = input.size(2);
  auto width = input.size(3);

  auto output = at::empty({num_rois, channels, pooled_height, pooled_width}, input.options());
  auto output_size = num_rois * pooled_height * pooled_width * channels;

  if (output.numel() == 0) {
    return output;
  }

  AT_DISPATCH_FLOATING_TYPES(input.type(), "ROIAlign_forward", [&] {
    ROIAlignForward_cpu_kernel<scalar_t>(
         output_size,
         input.data<scalar_t>(),
         spatial_scale,
         channels,
         height,
         width,
         pooled_height,
         pooled_width,
         sampling_ratio,
         rois.data<scalar_t>(),
         output.data<scalar_t>());
  });
  return output;
}