File size: 7,331 Bytes
c310e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# #!/usr/bin/env python3
# # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
# import torch
# import torch.nn.functional as F
# from torch import nn


# class FPN(nn.Module):
#     """
#     Module that adds FPN on top of a list of feature maps.
#     The feature maps are currently supposed to be in increasing depth
#     order, and must be consecutive
#     """

#     def __init__(self, in_channels_list, out_channels, top_blocks=None):
#         """
#         Arguments:
#             in_channels_list (list[int]): number of channels for each feature map that
#                 will be fed
#             out_channels (int): number of channels of the FPN representation
#             top_blocks (nn.Module or None): if provided, an extra operation will
#                 be performed on the output of the last (smallest resolution)
#                 FPN output, and the result will extend the result list
#         """
#         super(FPN, self).__init__()
#         self.inner_blocks = []
#         self.layer_blocks = []
#         for idx, in_channels in enumerate(in_channels_list, 1):
#             inner_block = "fpn_inner{}".format(idx)
#             layer_block = "fpn_layer{}".format(idx)
#             inner_block_module = nn.Conv2d(in_channels, out_channels, 1)
#             layer_block_module = nn.Conv2d(out_channels, out_channels, 3, 1, 1)
#             for module in [inner_block_module, layer_block_module]:
#                 # Caffe2 implementation uses XavierFill, which in fact
#                 # corresponds to kaiming_uniform_ in PyTorch
#                 nn.init.kaiming_uniform_(module.weight, a=1)
#                 nn.init.constant_(module.bias, 0)
#             self.add_module(inner_block, inner_block_module)
#             self.add_module(layer_block, layer_block_module)
#             self.inner_blocks.append(inner_block)
#             self.layer_blocks.append(layer_block)
#         self.top_blocks = top_blocks

#     def forward(self, x):
#         """
#         Arguments:
#             x (list[Tensor]): feature maps for each feature level.
#         Returns:
#             results (tuple[Tensor]): feature maps after FPN layers.
#                 They are ordered from highest resolution first.
#         """
#         last_inner = getattr(self, self.inner_blocks[-1])(x[-1])
#         results = []
#         results.append(getattr(self, self.layer_blocks[-1])(last_inner))
#         for feature, inner_block, layer_block in zip(
#             x[:-1][::-1], self.inner_blocks[:-1][::-1], self.layer_blocks[:-1][::-1]
#         ):
#             inner_top_down = F.interpolate(last_inner, scale_factor=2, mode="nearest")
#             inner_lateral = getattr(self, inner_block)(feature)
#             # TODO use size instead of scale to make it robust to different sizes
#             # inner_top_down = F.upsample(last_inner, size=inner_lateral.shape[-2:],
#             # mode='bilinear', align_corners=False)
#             last_inner = inner_lateral + inner_top_down
#             results.insert(0, getattr(self, layer_block)(last_inner))

#         if self.top_blocks is not None:
#             last_results = self.top_blocks(results[-1])
#             results.extend(last_results)

#         return tuple(results)


# class LastLevelMaxPool(nn.Module):
#     def forward(self, x):
#         return [F.max_pool2d(x, 1, 2, 0)]


# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import torch
import torch.nn.functional as F
from torch import nn

class FPN(nn.Module):
    """
    Module that adds FPN on top of a list of feature maps.
    The feature maps are currently supposed to be in increasing depth
    order, and must be consecutive
    """

    def __init__(
        self, in_channels_list, out_channels, conv_block, top_blocks=None
    ):
        """
        Arguments:
            in_channels_list (list[int]): number of channels for each feature map that
                will be fed
            out_channels (int): number of channels of the FPN representation
            top_blocks (nn.Module or None): if provided, an extra operation will
                be performed on the output of the last (smallest resolution)
                FPN output, and the result will extend the result list
        """
        super(FPN, self).__init__()
        self.inner_blocks = []
        self.layer_blocks = []
        for idx, in_channels in enumerate(in_channels_list, 1):
            inner_block = "fpn_inner{}".format(idx)
            layer_block = "fpn_layer{}".format(idx)

            if in_channels == 0:
                continue
            inner_block_module = conv_block(in_channels, out_channels, 1)
            layer_block_module = conv_block(out_channels, out_channels, 3, 1)
            self.add_module(inner_block, inner_block_module)
            self.add_module(layer_block, layer_block_module)
            self.inner_blocks.append(inner_block)
            self.layer_blocks.append(layer_block)
        self.top_blocks = top_blocks

    def forward(self, x):
        """
        Arguments:
            x (list[Tensor]): feature maps for each feature level.
        Returns:
            results (tuple[Tensor]): feature maps after FPN layers.
                They are ordered from highest resolution first.
        """
        last_inner = getattr(self, self.inner_blocks[-1])(x[-1])
        results = []
        results.append(getattr(self, self.layer_blocks[-1])(last_inner))
        for feature, inner_block, layer_block in zip(
            x[:-1][::-1], self.inner_blocks[:-1][::-1], self.layer_blocks[:-1][::-1]
        ):
            if not inner_block:
                continue
            inner_top_down = F.interpolate(last_inner, scale_factor=2, mode="nearest")
            inner_lateral = getattr(self, inner_block)(feature)
            # TODO use size instead of scale to make it robust to different sizes
            # inner_top_down = F.upsample(last_inner, size=inner_lateral.shape[-2:],
            # mode='bilinear', align_corners=False)
            last_inner = inner_lateral + inner_top_down
            results.insert(0, getattr(self, layer_block)(last_inner))

        if isinstance(self.top_blocks, LastLevelP6P7):
            last_results = self.top_blocks(x[-1], results[-1])
            results.extend(last_results)
        elif isinstance(self.top_blocks, LastLevelMaxPool):
            last_results = self.top_blocks(results[-1])
            results.extend(last_results)

        return tuple(results)


class LastLevelMaxPool(nn.Module):
    def forward(self, x):
        return [F.max_pool2d(x, 1, 2, 0)]


class LastLevelP6P7(nn.Module):
    """
    This module is used in RetinaNet to generate extra layers, P6 and P7.
    """
    def __init__(self, in_channels, out_channels):
        super(LastLevelP6P7, self).__init__()
        self.p6 = nn.Conv2d(in_channels, out_channels, 3, 2, 1)
        self.p7 = nn.Conv2d(out_channels, out_channels, 3, 2, 1)
        for module in [self.p6, self.p7]:
            nn.init.kaiming_uniform_(module.weight, a=1)
            nn.init.constant_(module.bias, 0)
        self.use_P5 = in_channels == out_channels

    def forward(self, c5, p5):
        x = p5 if self.use_P5 else c5
        p6 = self.p6(x)
        p7 = self.p7(F.relu(p6))
        return [p6, p7]