File size: 6,573 Bytes
c310e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
#!/usr/bin/env python3
import torch
from torch import nn

from .inference import make_seg_postprocessor
from .loss import make_seg_loss_evaluator
import time


def conv3x3(in_planes, out_planes, stride=1, has_bias=False):
    "3x3 convolution with padding"
    return nn.Conv2d(
        in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=has_bias
    )


def conv3x3_bn_relu(in_planes, out_planes, stride=1, has_bias=False):
    return nn.Sequential(
        conv3x3(in_planes, out_planes, stride),
        nn.BatchNorm2d(out_planes),
        nn.ReLU(inplace=True),
    )


class SEGHead(nn.Module):
    """
    Adds a simple SEG Head with pixel-level prediction
    """

    def __init__(self, in_channels, cfg):
        """
        Arguments:
            in_channels (int): number of channels of the input feature
        """
        super(SEGHead, self).__init__()
        self.cfg = cfg
        ndim = 256
        self.fpn_out5 = nn.Sequential(
            conv3x3(ndim, 64), nn.Upsample(scale_factor=8, mode="nearest")
        )
        self.fpn_out4 = nn.Sequential(
            conv3x3(ndim, 64), nn.Upsample(scale_factor=4, mode="nearest")
        )
        self.fpn_out3 = nn.Sequential(
            conv3x3(ndim, 64), nn.Upsample(scale_factor=2, mode="nearest")
        )
        self.fpn_out2 = conv3x3(ndim, 64)
        self.seg_out = nn.Sequential(
            conv3x3_bn_relu(in_channels, 64, 1),
            nn.ConvTranspose2d(64, 64, 2, 2),
            nn.BatchNorm2d(64),
            nn.ReLU(True),
            nn.ConvTranspose2d(64, 1, 2, 2),
            nn.Sigmoid(),
        )
        if self.cfg.MODEL.SEG.USE_PPM:
            # PPM Module
            pool_scales=(2, 4, 8)
            fc_dim = 256
            self.ppm_pooling = []
            self.ppm_conv = []
            for scale in pool_scales:
                self.ppm_pooling.append(nn.AdaptiveAvgPool2d(scale))
                self.ppm_conv.append(nn.Sequential(
                    nn.Conv2d(fc_dim, 512, kernel_size=1, bias=False),
                    nn.BatchNorm2d(512),
                    nn.ReLU(inplace=True)
                ))
            self.ppm_pooling = nn.ModuleList(self.ppm_pooling)
            self.ppm_conv = nn.ModuleList(self.ppm_conv)
            self.ppm_last_conv = conv3x3_bn_relu(fc_dim + len(pool_scales)*512, ndim, 1)
            self.ppm_conv.apply(self.weights_init)
            self.ppm_last_conv.apply(self.weights_init)
        self.fpn_out5.apply(self.weights_init)
        self.fpn_out4.apply(self.weights_init)
        self.fpn_out3.apply(self.weights_init)
        self.fpn_out2.apply(self.weights_init)
        self.seg_out.apply(self.weights_init)

    def forward(self, x):
        if self.cfg.MODEL.SEG.USE_PPM:
            conv5 = x[-2]
            input_size = conv5.size()
            ppm_out = [conv5]
            for pool_scale, pool_conv in zip(self.ppm_pooling, self.ppm_conv):
                ppm_out.append(pool_conv(nn.functional.interpolate(
                    pool_scale(conv5),
                    (input_size[2], input_size[3]),
                    mode='bilinear', align_corners=False)))
            ppm_out = torch.cat(ppm_out, 1)
            f = self.ppm_last_conv(ppm_out)
        else:
            f = x[-2]
        # p5 = self.fpn_out5(x[-2])
        p5 = self.fpn_out5(f)
        p4 = self.fpn_out4(x[-3])
        p3 = self.fpn_out3(x[-4])
        p2 = self.fpn_out2(x[-5])
        fuse = torch.cat((p5, p4, p3, p2), 1)
        out = self.seg_out(fuse)
        return out, fuse

    def weights_init(self, m):
        classname = m.__class__.__name__
        if classname.find("Conv") != -1:
            nn.init.kaiming_normal_(m.weight.data)
        elif classname.find("BatchNorm") != -1:
            m.weight.data.fill_(1.0)
            m.bias.data.fill_(1e-4)


class SEGModule(torch.nn.Module):
    """
    Module for RPN computation. Takes feature maps from the backbone and RPN
    proposals and losses. Works for both FPN and non-FPN.
    """

    def __init__(self, cfg):
        super(SEGModule, self).__init__()

        self.cfg = cfg.clone()

        in_channels = cfg.MODEL.BACKBONE.OUT_CHANNELS
        head = SEGHead(in_channels, cfg)

        box_selector_train = make_seg_postprocessor(cfg, is_train=True)
        box_selector_test = make_seg_postprocessor(cfg, is_train=False)

        loss_evaluator = make_seg_loss_evaluator(cfg)

        # self.anchor_generator = anchor_generator
        self.head = head
        self.box_selector_train = box_selector_train
        self.box_selector_test = box_selector_test
        self.loss_evaluator = loss_evaluator

    def forward(self, images, features, targets=None):
        """
        Arguments:
            images (ImageList): images for which we want to compute the predictions
            features (Tensor): fused feature from FPN
            targets (Tensor): segmentaion gt map

        Returns:
            boxes (list[BoxList]): the predicted boxes from the RPN, one BoxList per
                image.
            losses (dict[Tensor]): the losses for the model during training. During
                testing, it is an empty dict.
        """
        preds, fuse_feature = self.head(features)
        # anchors = self.anchor_generator(images, features)
        image_shapes = images.get_sizes()
        if self.training:
            return self._forward_train(preds, targets, image_shapes), [fuse_feature]
        else:
            return self._forward_test(preds, image_shapes), [fuse_feature]

    def _forward_train(self, preds, targets, image_shapes):
        # Segmentation map must be transformed into boxes for detection.
        # sampled into a training batch.
        with torch.no_grad():
            boxes = self.box_selector_train(preds, image_shapes, targets)
        loss_seg = self.loss_evaluator(preds, targets)
        losses = {"loss_seg": loss_seg}
        return boxes, losses

    def _forward_test(self, preds, image_shapes):
        # torch.cuda.synchronize()
        # start_time = time.time()
        boxes, rotated_boxes, polygons, scores = self.box_selector_test(preds, image_shapes)
        # torch.cuda.synchronize()
        # end_time = time.time()
        # print('post time:', end_time - start_time)
        seg_results = {'rotated_boxes': rotated_boxes, 'polygons': polygons, 'preds': preds, 'scores': scores}
        return boxes, seg_results


def build_segmentation(cfg):
    """
    This gives the gist of it. Not super important because it doesn't change as much
    """
    return SEGModule(cfg)