File size: 6,623 Bytes
c310e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import os
import numpy as np
import cv2
from shapely.geometry import box, Polygon 
from shapely import affinity
import math


def _rect2quad(boxes):
    x_min, y_min, x_max, y_max = boxes[:, 0].reshape((-1, 1)), boxes[:, 1].reshape((-1, 1)), boxes[:, 2].reshape((-1, 1)), boxes[:, 3].reshape((-1, 1))
    return np.hstack((x_min, y_min, x_max, y_min, x_max, y_max, x_min, y_max))

def _quad2rect(boxes):
    ## only support rectangle
    return np.hstack((boxes[:, 0].reshape((-1, 1)), boxes[:, 1].reshape((-1, 1)), boxes[:, 4].reshape((-1, 1)), boxes[:, 5].reshape((-1, 1))))

def _quad2minrect(boxes):
    ## trans a quad(N*4) to a rectangle(N*4) which has miniual area to cover it
    return np.hstack((boxes[:, ::2].min(axis=1).reshape((-1, 1)), boxes[:, 1::2].min(axis=1).reshape((-1, 1)), boxes[:, ::2].max(axis=1).reshape((-1, 1)), boxes[:, 1::2].max(axis=1).reshape((-1, 1))))


def _quad2boxlist(boxes):
    res = []
    for i in range(boxes.shape[0]):
        res.append([[boxes[i][0], boxes[i][1]], [boxes[i][2], boxes[i][3]], [boxes[i][4], boxes[i][5]], [boxes[i][6], boxes[i][7]]])
    return res

def _boxlist2quads(boxlist):
    res = np.zeros((len(boxlist), 8))
    for i, box in enumerate(boxlist):
        # print(box)
        res[i] = np.array([box[0][0], box[0][1], box[1][0], box[1][1], box[2][0], box[2][1], box[3][0], box[3][1]])
    return res

def _rotate_image(im, polygons, angle):
    new_polygons = polygons
    ## rotate image first
    height, width, _ = im.shape
    ## get the minimal rect to cover the rotated image
    img_box = np.array([[0, 0, width, 0, width, height, 0, height]])
    rotated_img_box = _quad2minrect(_rotate_polygons(img_box, -1*angle, (width/2, height/2)))
    r_height = int(max(rotated_img_box[0][3], rotated_img_box[0][1]) - min(rotated_img_box[0][3], rotated_img_box[0][1]))
    r_width = int(max(rotated_img_box[0][2], rotated_img_box[0][0]) - min(rotated_img_box[0][2], rotated_img_box[0][0]))
    r_height_padding = max(r_height, height)
    r_width_padding = max(r_width, width)
    ## padding im
    im_padding = np.zeros((r_height_padding, r_width_padding, 3))
    start_h, start_w = int((r_height_padding - height)/2.0), int((r_width_padding - width)/2.0)
    # start_h = max(start_h, 0)
    # start_w = max(start_w, 0)
    end_h, end_w = start_h + height, start_w + width
    # print(start_h, end_h, start_w, end_w, im.shape)
    im_padding[start_h:end_h, start_w:end_w, :] = im

    M = cv2.getRotationMatrix2D((r_width/2, r_height/2), angle, 1)
    im = cv2.warpAffine(im_padding, M, (r_width, r_height))
    
    ## polygons
    new_polygons = _rotate_segms(polygons, -1*angle, (r_width/2, r_height/2), start_h, start_w)

    return im, new_polygons

def _rotate_polygons(polygons, angle, r_c):
    ## polygons: N*8
    ## r_x: rotate center x
    ## r_y: rotate center y
    ## angle: -15~15

    poly_list = _quad2boxlist(polygons)
    rotate_boxes_list = []
    for poly in poly_list:
        box = Polygon(poly)
        rbox = affinity.rotate(box, angle, r_c)
        if len(list(rbox.exterior.coords))<5:
            print(poly)
            print(rbox)
        # assert(len(list(rbox.exterior.coords))>=5)
        rotate_boxes_list.append(rbox.boundary.coords[:-1])
    res = _boxlist2quads(rotate_boxes_list)
    return res

def _rotate_segms(polygons, angle, r_c, start_h, start_w):
    ## polygons: N*8
    ## r_x: rotate center x
    ## r_y: rotate center y
    ## angle: -15~15
    poly_list=[]
    for polygon in polygons:
        tmp=[]
        for i in range(int(len(polygon) / 2)):
            tmp.append([polygon[2*i] + start_w, polygon[2*i+1] + start_h])
        poly_list.append(tmp)

    rotate_boxes_list = []
    for poly in poly_list:
        box = Polygon(poly)
        rbox = affinity.rotate(box, angle, r_c)
        if len(list(rbox.exterior.coords))<5:
            print(poly)
            print(rbox)
        rotate_boxes_list.append(rbox.boundary.coords[:-1])
    res = []
    for i, box in enumerate(rotate_boxes_list):
        tmp = []
        for point in box:
            tmp.append(point[0])
            tmp.append(point[1])
        res.append([tmp])

    return res

def _read_gt(gt_path):
    polygons = []
    words = []
    with open(gt_path, 'r') as fid:
        lines = fid.readlines()
        for line in lines:
            line = line.strip()
            polygon = line.split(',')[:8]
            word = line.split(',')[8]
            polygon = [float(x) for x in polygon]
            polygons.append(polygon)
            words.append(word)
    return polygons, words

def format_new_gt(polygons, words, new_gt_path):
    with open(new_gt_path, 'wt') as fid:
        for polygon, word in zip(polygons, words):
            # print(polygon)
            polygon = [str(int(x)) for x in polygon[0]]
            # polygon = [str(int(x)) for x in polygon]
            line = ','.join(polygon) + ',' + word
            # print(line)
            fid.write(line+'\n')

def visu_gt(img, polygons, visu_path):
    for polygon in polygons:
        pts = np.array(polygon, np.int32)
        pts = pts.reshape((-1,1,2))
        cv2.polylines(img,[pts],True,(0,255,255))
    cv2.imwrite(visu_path, img)


img_dir = '../datasets/icdar2013/test_images'
gt_dir = '../datasets/icdar2013/test_gts'
angle = 45
new_img_dir = '../datasets/icdar2013/rotated_test_images'+'_'+str(angle)
new_gt_dir = '../datasets/icdar2013/rotated_test_gts'+'_'+str(angle)
if not os.path.isdir(new_img_dir):
    os.mkdir(new_img_dir)
if not os.path.isdir(new_gt_dir):
    os.mkdir(new_gt_dir)

visu_dir = '../output/visu/'

for i in range(233):
    img_name = 'img_' + str(i+1) + '.jpg'
    img_path = os.path.join(img_dir, img_name)
    img = cv2.imread(img_path)
    gt_path = os.path.join(gt_dir, img_name + '.txt')
    new_img_path = os.path.join(new_img_dir, img_name)
    visu_path = os.path.join(visu_dir, img_name)
    new_gt_path = os.path.join(new_gt_dir, 'gt_' + img_name.split('.')[0] + '.txt')
    polygons, words = _read_gt(gt_path)
    # print(img_name)
    if angle == 90:
        (h, w) = img.shape[:2]
        img = cv2.transpose(img)
        img = cv2.flip(img,flipCode=0)
        # M = cv2.getRotationMatrix2D(center, 90, 1)
        # img = cv2.warpAffine(img, M, (h, w))
        new_polygons = [[polygon[1], w-polygon[0], polygon[3], w-polygon[2], polygon[5], w-polygon[4], polygon[7], w-polygon[6]] for polygon in polygons]
    else:
        img, new_polygons = _rotate_image(img, polygons, angle)
    format_new_gt(new_polygons, words, new_gt_path)
    # visu_gt(img, new_polygons, visu_path)
    cv2.imwrite(new_img_path, img)