Spaces:
Runtime error
Runtime error
File size: 9,096 Bytes
c310e19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
"""
Simple dataset class that wraps a list of path names
"""
import os
import numpy as np
import torch
from maskrcnn_benchmark.structures.bounding_box import BoxList
from maskrcnn_benchmark.structures.segmentation_mask import (
SegmentationCharMask,
SegmentationMask,
)
from PIL import Image, ImageDraw
class SynthtextDataset(object):
def __init__(self, use_charann, list_file_path, imgs_dir, gts_dir, transforms=None, ignore_difficult=False):
self.use_charann = use_charann
with open(list_file_path, "r") as list_file:
image_lines = list_file.readlines()
self.image_lists = [
os.path.join(imgs_dir, line.strip()) for line in image_lines
]
self.gt_lists = [
os.path.join(gts_dir, line.strip() + ".txt") for line in image_lines
]
self.filtered_gts = []
self.transforms = transforms
self.min_proposal_size = 2
self.char_classes = "_0123456789abcdefghijklmnopqrstuvwxyz"
self.vis = False
self.ignore_difficult = ignore_difficult
def __getitem__(self, item):
while True:
img_path = self.image_lists[item]
try:
img = Image.open(img_path).convert("RGB")
break
except BaseException:
item += 1
im_name = os.path.basename(img_path)
width, height = img.size
gt_path = self.gt_lists[item]
words, boxes, charsbbs, segmentations = self.load_gt_from_txt(
gt_path, height, width
)
target = BoxList(
boxes[:, :4], img.size, mode="xyxy", use_char_ann=self.use_charann
)
classes = torch.ones(len(boxes))
target.add_field("labels", classes)
masks = SegmentationMask(segmentations, img.size)
target.add_field("masks", masks)
if words[0] == "":
use_char_ann = False
else:
use_char_ann = True
if not self.use_charann:
use_char_ann = False
char_masks = SegmentationCharMask(
charsbbs, words=words, use_char_ann=use_char_ann, size=img.size, char_num_classes=len(self.char_classes)
)
target.add_field("char_masks", char_masks)
if self.transforms is not None:
img, target = self.transforms(img, target)
if self.vis:
new_im = img.numpy().copy().transpose([1, 2, 0]) + [
102.9801,
115.9465,
122.7717,
]
new_im = Image.fromarray(new_im.astype(np.uint8)).convert("RGB")
mask = target.extra_fields["masks"].polygons[0].convert("mask")
mask = Image.fromarray((mask.numpy() * 255).astype(np.uint8)).convert("RGB")
if self.use_charann:
m, _ = (
target.extra_fields["char_masks"]
.chars_boxes[0]
.convert("char_mask")
)
color = self.creat_color_map(37, 255)
color_map = color[m.numpy().astype(np.uint8)]
char = Image.fromarray(color_map.astype(np.uint8)).convert("RGB")
char = Image.blend(char, new_im, 0.5)
else:
char = new_im
new = Image.blend(char, mask, 0.5)
img_draw = ImageDraw.Draw(new)
for box in target.bbox.numpy():
box = list(box)
box = box[:2] + [box[2], box[1]] + box[2:] + [box[0], box[3]] + box[:2]
img_draw.line(box, fill=(255, 0, 0), width=2)
new.save("./vis/char_" + im_name)
return img, target, self.image_lists[item]
def creat_color_map(self, n_class, width):
splits = int(np.ceil(np.power((n_class * 1.0), 1.0 / 3)))
maps = []
for i in range(splits):
r = int(i * width * 1.0 / (splits - 1))
for j in range(splits):
g = int(j * width * 1.0 / (splits - 1))
for k in range(splits - 1):
b = int(k * width * 1.0 / (splits - 1))
maps.append([r, g, b])
return np.array(maps)
def __len__(self):
return len(self.image_lists)
def load_gt_from_txt(self, gt_path, height=None, width=None):
words, boxes, charsboxes, segmentations = [], [], [], []
lines = open(gt_path).readlines()
for line in lines:
charbbs = []
strs, loc = self.line2boxes(line)
word = strs[0]
if word == "###":
continue
else:
rect = list(loc[0])
min_x = min(rect[::2]) - 1
min_y = min(rect[1::2]) - 1
max_x = max(rect[::2]) - 1
max_y = max(rect[1::2]) - 1
box = [min_x, min_y, max_x, max_y]
segmentations.append([loc[0, :]])
tindex = len(boxes)
boxes.append(box)
words.append(word)
c_class = self.char2num(strs[1:])
charbb = np.zeros((10,), dtype=np.float32)
if loc.shape[0] > 1:
for i in range(1, loc.shape[0]):
charbb[:8] = loc[i, :]
charbb[8] = c_class[i - 1]
charbb[9] = tindex
charbbs.append(charbb.copy())
else:
charbbs.append(charbb.copy())
charsboxes.append(charbbs)
num_boxes = len(boxes)
if len(boxes) > 0:
keep_boxes = np.zeros((num_boxes, 5))
keep_boxes[:, :4] = np.array(boxes)
keep_boxes[:, 4] = range(
num_boxes
)
# the 5th column is the box label,
# same as the 10th column of all charsboxes which belong to the box
if self.use_charann:
return words, np.array(keep_boxes), charsboxes, segmentations
else:
charbbs = np.zeros((10,), dtype=np.float32)
for _ in range(len(words)):
charsboxes.append([charbbs])
return words, np.array(keep_boxes), [[charbbs]], segmentations
else:
words.append("")
charbbs = np.zeros((10,), dtype=np.float32)
return (
words,
np.zeros((1, 5), dtype=np.float32),
[[charbbs]],
[[np.zeros((8,), dtype=np.float32)]],
)
def line2boxes(self, line):
parts = line.strip().split(",")
if "\xef\xbb\xbf" in parts[0]:
parts[0] = parts[0][3:]
if "\ufeff" in parts[0]:
parts[0] = parts[0].replace("\ufeff", "")
x1 = np.array([int(float(x)) for x in parts[::9]])
y1 = np.array([int(float(x)) for x in parts[1::9]])
x2 = np.array([int(float(x)) for x in parts[2::9]])
y2 = np.array([int(float(x)) for x in parts[3::9]])
x3 = np.array([int(float(x)) for x in parts[4::9]])
y3 = np.array([int(float(x)) for x in parts[5::9]])
x4 = np.array([int(float(x)) for x in parts[6::9]])
y4 = np.array([int(float(x)) for x in parts[7::9]])
strs = parts[8::9]
loc = np.vstack((x1, y1, x2, y2, x3, y3, x4, y4)).transpose()
return strs, loc
def check_charbbs(self, charbbs):
xmins = np.minimum.reduce(
[charbbs[:, 0], charbbs[:, 2], charbbs[:, 4], charbbs[:, 6]]
)
xmaxs = np.maximum.reduce(
[charbbs[:, 0], charbbs[:, 2], charbbs[:, 4], charbbs[:, 6]]
)
ymins = np.minimum.reduce(
[charbbs[:, 1], charbbs[:, 3], charbbs[:, 5], charbbs[:, 7]]
)
ymaxs = np.maximum.reduce(
[charbbs[:, 1], charbbs[:, 3], charbbs[:, 5], charbbs[:, 7]]
)
return np.logical_and(
xmaxs - xmins > self.min_proposal_size,
ymaxs - ymins > self.min_proposal_size,
)
def check_charbb(self, charbb):
xmins = min(charbb[0], charbb[2], charbb[4], charbb[6])
xmaxs = max(charbb[0], charbb[2], charbb[4], charbb[6])
ymins = min(charbb[1], charbb[3], charbb[5], charbb[7])
ymaxs = max(charbb[1], charbb[3], charbb[5], charbb[7])
return (
xmaxs - xmins > self.min_proposal_size
and ymaxs - ymins > self.min_proposal_size
)
def char2num(self, chars):
## chars ['h', 'e', 'l', 'l', 'o']
nums = [self.char_classes.index(c.lower()) for c in chars]
return nums
def get_img_info(self, item):
"""
Return the image dimensions for the image, without
loading and pre-processing it
"""
im_name = os.path.basename(self.image_lists[item])
img = Image.open(self.image_lists[item])
width, height = img.size
img_info = {"im_name": im_name, "height": height, "width": width}
return img_info
|