3v324v23's picture
add
c310e19
raw
history blame
3.69 kB
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
# Set up custom environment before nearly anything else is imported
# NOTE: this should be the first import (no not reorder)
from maskrcnn_benchmark.utils.env import setup_environment # noqa F401 isort:skip
import argparse
import os
import torch
from maskrcnn_benchmark.config import cfg
from maskrcnn_benchmark.data import make_data_loader
from maskrcnn_benchmark.engine.text_inference import inference
from maskrcnn_benchmark.modeling.detector import build_detection_model
from maskrcnn_benchmark.utils.checkpoint import DetectronCheckpointer
from maskrcnn_benchmark.utils.collect_env import collect_env_info
from maskrcnn_benchmark.utils.comm import synchronize, get_rank
from maskrcnn_benchmark.utils.logging import setup_logger
from maskrcnn_benchmark.utils.miscellaneous import mkdir
# Check if we can enable mixed-precision via apex.amp
try:
from apex import amp
except ImportError:
raise ImportError('Use APEX for mixed precision via apex.amp')
def main():
parser = argparse.ArgumentParser(description="PyTorch Object Detection Inference")
parser.add_argument(
"--config-file",
default="./configs/seq.yaml",
metavar="FILE",
help="path to config file",
)
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument(
"opts",
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER,
)
args = parser.parse_args()
num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
distributed = num_gpus > 1
if distributed:
torch.cuda.set_device(args.local_rank)
torch.distributed.deprecated.init_process_group(
backend="nccl", init_method="env://"
)
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
save_dir = ""
logger = setup_logger("maskrcnn_benchmark", save_dir, get_rank())
logger.info("Using {} GPUs".format(num_gpus))
logger.info(cfg)
logger.info("Collecting env info (might take some time)")
logger.info("\n" + collect_env_info())
model = build_detection_model(cfg)
model.to(cfg.MODEL.DEVICE)
# Initialize mixed-precision if necessary
use_mixed_precision = cfg.DTYPE == 'float16'
amp_handle = amp.init(enabled=use_mixed_precision, verbose=cfg.AMP_VERBOSE)
checkpointer = DetectronCheckpointer(cfg, model)
_ = checkpointer.load(cfg.MODEL.WEIGHT)
iou_types = ("bbox",)
if cfg.MODEL.MASK_ON:
iou_types = iou_types + ("segm",)
output_folders = [None] * len(cfg.DATASETS.TEST)
if cfg.OUTPUT_DIR:
dataset_names = cfg.DATASETS.TEST
for idx, dataset_name in enumerate(dataset_names):
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference", dataset_name)
mkdir(output_folder)
output_folders[idx] = output_folder
data_loaders_val = make_data_loader(cfg, is_train=False, is_distributed=distributed)
model_name = cfg.MODEL.WEIGHT.split('/')[-1]
for output_folder, data_loader_val in zip(output_folders, data_loaders_val):
inference(
model,
data_loader_val,
iou_types=iou_types,
box_only=cfg.MODEL.RPN_ONLY,
device=cfg.MODEL.DEVICE,
expected_results=cfg.TEST.EXPECTED_RESULTS,
expected_results_sigma_tol=cfg.TEST.EXPECTED_RESULTS_SIGMA_TOL,
output_folder=output_folder,
model_name=model_name,
cfg=cfg,
)
synchronize()
if __name__ == "__main__":
main()