Spaces:
Runtime error
Runtime error
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. | |
# Set up custom environment before nearly anything else is imported | |
# NOTE: this should be the first import (no not reorder) | |
from maskrcnn_benchmark.utils.env import setup_environment # noqa F401 isort:skip | |
import argparse | |
import os | |
import torch | |
from maskrcnn_benchmark.config import cfg | |
from maskrcnn_benchmark.data import make_data_loader | |
from maskrcnn_benchmark.engine.text_inference import inference | |
from maskrcnn_benchmark.modeling.detector import build_detection_model | |
from maskrcnn_benchmark.utils.checkpoint import DetectronCheckpointer | |
from maskrcnn_benchmark.utils.collect_env import collect_env_info | |
from maskrcnn_benchmark.utils.comm import synchronize, get_rank | |
from maskrcnn_benchmark.utils.logging import setup_logger | |
from maskrcnn_benchmark.utils.miscellaneous import mkdir | |
# Check if we can enable mixed-precision via apex.amp | |
try: | |
from apex import amp | |
except ImportError: | |
raise ImportError('Use APEX for mixed precision via apex.amp') | |
def main(): | |
parser = argparse.ArgumentParser(description="PyTorch Object Detection Inference") | |
parser.add_argument( | |
"--config-file", | |
default="./configs/seq.yaml", | |
metavar="FILE", | |
help="path to config file", | |
) | |
parser.add_argument("--local_rank", type=int, default=0) | |
parser.add_argument( | |
"opts", | |
help="Modify config options using the command-line", | |
default=None, | |
nargs=argparse.REMAINDER, | |
) | |
args = parser.parse_args() | |
num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1 | |
distributed = num_gpus > 1 | |
if distributed: | |
torch.cuda.set_device(args.local_rank) | |
torch.distributed.deprecated.init_process_group( | |
backend="nccl", init_method="env://" | |
) | |
cfg.merge_from_file(args.config_file) | |
cfg.merge_from_list(args.opts) | |
cfg.freeze() | |
save_dir = "" | |
logger = setup_logger("maskrcnn_benchmark", save_dir, get_rank()) | |
logger.info("Using {} GPUs".format(num_gpus)) | |
logger.info(cfg) | |
logger.info("Collecting env info (might take some time)") | |
logger.info("\n" + collect_env_info()) | |
model = build_detection_model(cfg) | |
model.to(cfg.MODEL.DEVICE) | |
# Initialize mixed-precision if necessary | |
use_mixed_precision = cfg.DTYPE == 'float16' | |
amp_handle = amp.init(enabled=use_mixed_precision, verbose=cfg.AMP_VERBOSE) | |
checkpointer = DetectronCheckpointer(cfg, model) | |
_ = checkpointer.load(cfg.MODEL.WEIGHT) | |
iou_types = ("bbox",) | |
if cfg.MODEL.MASK_ON: | |
iou_types = iou_types + ("segm",) | |
output_folders = [None] * len(cfg.DATASETS.TEST) | |
if cfg.OUTPUT_DIR: | |
dataset_names = cfg.DATASETS.TEST | |
for idx, dataset_name in enumerate(dataset_names): | |
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference", dataset_name) | |
mkdir(output_folder) | |
output_folders[idx] = output_folder | |
data_loaders_val = make_data_loader(cfg, is_train=False, is_distributed=distributed) | |
model_name = cfg.MODEL.WEIGHT.split('/')[-1] | |
for output_folder, data_loader_val in zip(output_folders, data_loaders_val): | |
inference( | |
model, | |
data_loader_val, | |
iou_types=iou_types, | |
box_only=cfg.MODEL.RPN_ONLY, | |
device=cfg.MODEL.DEVICE, | |
expected_results=cfg.TEST.EXPECTED_RESULTS, | |
expected_results_sigma_tol=cfg.TEST.EXPECTED_RESULTS_SIGMA_TOL, | |
output_folder=output_folder, | |
model_name=model_name, | |
cfg=cfg, | |
) | |
synchronize() | |
if __name__ == "__main__": | |
main() | |