3v324v23's picture
add
c310e19
raw
history blame
1.54 kB
import os
os.system('python setup.py build develop')
os.system('pip install --upgrade --no-cache-dir gdown')
os.system('gdown -O output/mixtrain/ 1XQsikiNY7ILgZvmvOeUf9oPDG4fTp0zs')
import cv2
import pandas as pd
import gradio as gr
from tools.demo import TextDemo
from maskrcnn_benchmark.config import cfg
def infer(filepath):
cfg.merge_from_file('configs/mixtrain/seg_rec_poly_fuse_feature.yaml')
# manual override some options
cfg.merge_from_list(["MODEL.DEVICE", "cpu"])
text_demo = TextDemo(
cfg,
min_image_size=800,
confidence_threshold=0.7,
output_polygon=True
)
image = cv2.imread(filepath)
result_polygons, result_words = text_demo.run_on_opencv_image(image)
text_demo.visualization(image, result_polygons, result_words)
cv2.imwrite('result.jpg', image)
return 'result.jpg', pd.DataFrame(result_words)
iface = gr.Interface(
fn=infer,
title="Mask TextSpotter v3",
description="Mask TextSpotter v3 is an end-to-end trainable scene text spotter that adopts a Segmentation Proposal Network (SPN) instead of an RPN. Mask TextSpotter v3 significantly improves robustness to rotations, aspect ratios, and shapes.",
inputs=[gr.inputs.Image(label="image", type="filepath")],
outputs=[gr.outputs.Image(), gr.outputs.Dataframe(headers=['word'])],
examples=['example1.jpg', 'example2.jpg', 'example3.jpg'],
article="<a href=\"https://github.com/MhLiao/MaskTextSpotterV3\">GitHub Repo</a>",
).launch(enable_queue=True, cache_examples=True)