# #!/usr/bin/env python3 # # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # import torch # import torch.nn.functional as F # from torch import nn # class FPN(nn.Module): # """ # Module that adds FPN on top of a list of feature maps. # The feature maps are currently supposed to be in increasing depth # order, and must be consecutive # """ # def __init__(self, in_channels_list, out_channels, top_blocks=None): # """ # Arguments: # in_channels_list (list[int]): number of channels for each feature map that # will be fed # out_channels (int): number of channels of the FPN representation # top_blocks (nn.Module or None): if provided, an extra operation will # be performed on the output of the last (smallest resolution) # FPN output, and the result will extend the result list # """ # super(FPN, self).__init__() # self.inner_blocks = [] # self.layer_blocks = [] # for idx, in_channels in enumerate(in_channels_list, 1): # inner_block = "fpn_inner{}".format(idx) # layer_block = "fpn_layer{}".format(idx) # inner_block_module = nn.Conv2d(in_channels, out_channels, 1) # layer_block_module = nn.Conv2d(out_channels, out_channels, 3, 1, 1) # for module in [inner_block_module, layer_block_module]: # # Caffe2 implementation uses XavierFill, which in fact # # corresponds to kaiming_uniform_ in PyTorch # nn.init.kaiming_uniform_(module.weight, a=1) # nn.init.constant_(module.bias, 0) # self.add_module(inner_block, inner_block_module) # self.add_module(layer_block, layer_block_module) # self.inner_blocks.append(inner_block) # self.layer_blocks.append(layer_block) # self.top_blocks = top_blocks # def forward(self, x): # """ # Arguments: # x (list[Tensor]): feature maps for each feature level. # Returns: # results (tuple[Tensor]): feature maps after FPN layers. # They are ordered from highest resolution first. # """ # last_inner = getattr(self, self.inner_blocks[-1])(x[-1]) # results = [] # results.append(getattr(self, self.layer_blocks[-1])(last_inner)) # for feature, inner_block, layer_block in zip( # x[:-1][::-1], self.inner_blocks[:-1][::-1], self.layer_blocks[:-1][::-1] # ): # inner_top_down = F.interpolate(last_inner, scale_factor=2, mode="nearest") # inner_lateral = getattr(self, inner_block)(feature) # # TODO use size instead of scale to make it robust to different sizes # # inner_top_down = F.upsample(last_inner, size=inner_lateral.shape[-2:], # # mode='bilinear', align_corners=False) # last_inner = inner_lateral + inner_top_down # results.insert(0, getattr(self, layer_block)(last_inner)) # if self.top_blocks is not None: # last_results = self.top_blocks(results[-1]) # results.extend(last_results) # return tuple(results) # class LastLevelMaxPool(nn.Module): # def forward(self, x): # return [F.max_pool2d(x, 1, 2, 0)] # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import torch import torch.nn.functional as F from torch import nn class FPN(nn.Module): """ Module that adds FPN on top of a list of feature maps. The feature maps are currently supposed to be in increasing depth order, and must be consecutive """ def __init__( self, in_channels_list, out_channels, conv_block, top_blocks=None ): """ Arguments: in_channels_list (list[int]): number of channels for each feature map that will be fed out_channels (int): number of channels of the FPN representation top_blocks (nn.Module or None): if provided, an extra operation will be performed on the output of the last (smallest resolution) FPN output, and the result will extend the result list """ super(FPN, self).__init__() self.inner_blocks = [] self.layer_blocks = [] for idx, in_channels in enumerate(in_channels_list, 1): inner_block = "fpn_inner{}".format(idx) layer_block = "fpn_layer{}".format(idx) if in_channels == 0: continue inner_block_module = conv_block(in_channels, out_channels, 1) layer_block_module = conv_block(out_channels, out_channels, 3, 1) self.add_module(inner_block, inner_block_module) self.add_module(layer_block, layer_block_module) self.inner_blocks.append(inner_block) self.layer_blocks.append(layer_block) self.top_blocks = top_blocks def forward(self, x): """ Arguments: x (list[Tensor]): feature maps for each feature level. Returns: results (tuple[Tensor]): feature maps after FPN layers. They are ordered from highest resolution first. """ last_inner = getattr(self, self.inner_blocks[-1])(x[-1]) results = [] results.append(getattr(self, self.layer_blocks[-1])(last_inner)) for feature, inner_block, layer_block in zip( x[:-1][::-1], self.inner_blocks[:-1][::-1], self.layer_blocks[:-1][::-1] ): if not inner_block: continue inner_top_down = F.interpolate(last_inner, scale_factor=2, mode="nearest") inner_lateral = getattr(self, inner_block)(feature) # TODO use size instead of scale to make it robust to different sizes # inner_top_down = F.upsample(last_inner, size=inner_lateral.shape[-2:], # mode='bilinear', align_corners=False) last_inner = inner_lateral + inner_top_down results.insert(0, getattr(self, layer_block)(last_inner)) if isinstance(self.top_blocks, LastLevelP6P7): last_results = self.top_blocks(x[-1], results[-1]) results.extend(last_results) elif isinstance(self.top_blocks, LastLevelMaxPool): last_results = self.top_blocks(results[-1]) results.extend(last_results) return tuple(results) class LastLevelMaxPool(nn.Module): def forward(self, x): return [F.max_pool2d(x, 1, 2, 0)] class LastLevelP6P7(nn.Module): """ This module is used in RetinaNet to generate extra layers, P6 and P7. """ def __init__(self, in_channels, out_channels): super(LastLevelP6P7, self).__init__() self.p6 = nn.Conv2d(in_channels, out_channels, 3, 2, 1) self.p7 = nn.Conv2d(out_channels, out_channels, 3, 2, 1) for module in [self.p6, self.p7]: nn.init.kaiming_uniform_(module.weight, a=1) nn.init.constant_(module.bias, 0) self.use_P5 = in_channels == out_channels def forward(self, c5, p5): x = p5 if self.use_P5 else c5 p6 = self.p6(x) p7 = self.p7(F.relu(p6)) return [p6, p7]