Spaces:
Build error
Build error
File size: 1,577 Bytes
342de3e 96cf3b7 3d8420a 342de3e 3d8420a 6a5edc5 3d8420a 96cf3b7 342de3e 96cf3b7 342de3e 96cf3b7 342de3e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import gradio as gr
from transformers import pipeline
from transformers import BloomTokenizerFast, BloomForCausalLM
description = """
When in legal doubt, you better call BLOOM! Ask BLOOM any legal question:
<img src="https://huggingface.co/spaces/tomrb/bettercallbloom/resolve/main/img.jpeg" width=200px>
"""
title = "Better Call Bloom!"
examples = [["Adventurer is approached by a mysterious stranger in the tavern for a new quest."]]
tokenizer = BloomTokenizerFast.from_pretrained("tomrb/bettercallbloom-3b-8bit")
model = BloomForCausalLM.from_pretrained("tomrb/bettercallbloom-3b-8bit",low_cpu_mem_usage=True)
generator = pipeline('text-generation', model=model, tokenizer=tokenizer)
def preprocess(text):
#We add 'Question :' and 'Answer #1:' at the start and end of the prompt
return "Question: " + text + "Answer #1:"
def generate(text):
preprocessed_text = preprocess(text)
result = generator(preprocessed_text, max_length=128)
output = re.split(r'\nQuestion:|Answer #|Title:',result[0]['generated_text'])[2]
return output
examples = [
["I started a company with a friend. What types of legal documents should we fill in to clarify the ownership of the company?"],
["[CA] I got a parking ticket in Toronto. How can I contest it?"],
]
demo = gr.Interface(
fn=generate,
inputs=gr.inputs.Textbox(lines=5, label="Input Text", placeholder = "Write your question here..."),
outputs=gr.outputs.Textbox(label="Generated Text"),
examples=examples,
description=description,
title=title
)
demo.launch() |