import gradio as gr from transformers import pipeline from transformers import BloomTokenizerFast, BloomForCausalLM description = """ When in legal doubt, you better call BLOOM! Ask BLOOM any legal question: """ title = "Better Call Bloom!" examples = [["Adventurer is approached by a mysterious stranger in the tavern for a new quest."]] tokenizer = BloomTokenizerFast.from_pretrained("tomrb/bettercallbloom-3b-8bit") model = BloomForCausalLM.from_pretrained("tomrb/bettercallbloom-3b-8bit",device_map="auto") generator = pipeline('text-generation', model=model, tokenizer=tokenizer) def preprocess(text): #We add 'Question :' and 'Answer #1:' at the start and end of the prompt return "Question: " + text + "Answer #1:" def generate(text): preprocessed_text = preprocess(text) result = generator(preprocessed_text, max_length=128) output = re.split(r'\nQuestion:|Answer #|Title:',result[0]['generated_text'])[2] return output examples = [ ["I started a company with a friend. What types of legal documents should we fill in to clarify the ownership of the company?"], ["[CA] I got a parking ticket in Toronto. How can I contest it?"], ] demo = gr.Interface( fn=generate, inputs=gr.inputs.Textbox(lines=5, label="Input Text", placeholder = "Write your question here..."), outputs=gr.outputs.Textbox(label="Generated Text"), examples=examples, description=description, title=title ) demo.launch()