Update app.py
Browse files
app.py
CHANGED
@@ -1,71 +1,22 @@
|
|
1 |
import pathlib
|
2 |
-
from faster_whisper import WhisperModel
|
3 |
import yt_dlp
|
4 |
import uuid
|
5 |
import os
|
6 |
import gradio as gr
|
7 |
from tqdm import tqdm
|
8 |
|
9 |
-
# List of all supported video sites here https://github.com/yt-dlp/yt-dlp/blob/master/supportedsites.md
|
10 |
-
def download_convert_video_to_audio(
|
11 |
-
yt_dlp,
|
12 |
-
video_url: str,
|
13 |
-
destination_path: pathlib.Path,
|
14 |
-
) -> None:
|
15 |
-
ydl_opts = {
|
16 |
-
"format": "bestaudio/best",
|
17 |
-
"postprocessors": [
|
18 |
-
{ # Extract audio using ffmpeg
|
19 |
-
"key": "FFmpegExtractAudio",
|
20 |
-
"preferredcodec": "mp3",
|
21 |
-
}
|
22 |
-
],
|
23 |
-
"outtmpl": f"{destination_path}.%(ext)s",
|
24 |
-
}
|
25 |
-
try:
|
26 |
-
print(f"Downloading video from {video_url}")
|
27 |
-
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
28 |
-
ydl.download(video_url)
|
29 |
-
print(f"Downloaded video from {video_url} to {destination_path}")
|
30 |
-
except Exception as e:
|
31 |
-
raise (e)
|
32 |
|
33 |
-
def
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
return segment
|
38 |
-
|
39 |
-
def download_video(video_url: str):
|
40 |
-
download_convert_video_to_audio(yt_dlp, video_url, f"{uuid.uuid4().hex}")
|
41 |
-
|
42 |
-
def transcribe_video(video_url: str, word_timestamps: bool = True, model_size: str = "tiny"):
|
43 |
-
print(word_timestamps)
|
44 |
-
print("loading model")
|
45 |
-
model = WhisperModel(model_size, device="cpu", compute_type="int8")
|
46 |
-
# model = WhisperModel(model_size, device="cuda", compute_type="float16")
|
47 |
-
print("getting hex")
|
48 |
-
rand_id = uuid.uuid4().hex
|
49 |
-
print("doing download")
|
50 |
-
download_convert_video_to_audio(yt_dlp, video_url, f"{rand_id}")
|
51 |
-
segments, info = model.transcribe(f"{rand_id}.mp3", beam_size=5, word_timestamps=word_timestamps)
|
52 |
-
segments = [segment_to_dict(segment) for segment in segments]
|
53 |
-
total_duration = round(info.duration, 2) # Same precision as the Whisper timestamps.
|
54 |
-
print(info)
|
55 |
-
os.remove(f"{rand_id}.mp3")
|
56 |
-
print("Detected language '%s' with probability %f" % (info.language, info.language_probability))
|
57 |
-
print(segments)
|
58 |
return segments
|
59 |
|
60 |
-
# print("Detected language '%s' with probability %f" % (info.language, info.language_probability))
|
61 |
-
|
62 |
-
# for segment in segments:
|
63 |
-
# print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text))
|
64 |
|
65 |
demo = gr.Interface(fn=transcribe_video, inputs=[
|
66 |
-
gr.Textbox(label="
|
67 |
-
gr.
|
68 |
-
gr.
|
69 |
], outputs="text")
|
70 |
|
71 |
demo.launch()
|
|
|
1 |
import pathlib
|
|
|
2 |
import yt_dlp
|
3 |
import uuid
|
4 |
import os
|
5 |
import gradio as gr
|
6 |
from tqdm import tqdm
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
def transcribe_video(d_id_key: str, elv_key: str, full_text: str):
|
10 |
+
print("Test")
|
11 |
+
segments="Work In Progress"
|
12 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
return segments
|
14 |
|
|
|
|
|
|
|
|
|
15 |
|
16 |
demo = gr.Interface(fn=transcribe_video, inputs=[
|
17 |
+
gr.Textbox(label="D-Id API Key",placeholder="Paste your D-Id",type='password'),
|
18 |
+
gr.Textbox(label="Elevenlabs API Keys",placeholder="Paste Elevenlabs",type='password'),
|
19 |
+
gr.Textbox(lines=4, label=" Please input the text you wish to generate in order to make the photo speak.", placeholder="English Text here")
|
20 |
], outputs="text")
|
21 |
|
22 |
demo.launch()
|