# 1. Importamos las librerías necesarias import torch import gradio as gr from typing import Dict from transformers import pipeline # 2. Deifnimos nuestra función para usar el modelo food_not_food_classifier = pipeline(task="text-classification", model="tonicanada/learn_hf_food_not_food_text_classifier-distilbert-base-uncased", top_k=1, device="cuda" if torch.cuda.is_available() else "cpu", batch_size=32) def classify_text(text): # Usa el clasificador result = food_not_food_classifier(text) # Ahora accedemos al primer diccionario en la primera lista return result[0][0]['label'], result[0][0]['score'] # 3. Create a Gradio interface description = """ A text classifier to determine if a sentence is about food or not food. Fine-tuned from [DistilBERT](https://huggingface.co/distilbert/distilbert-base-uncased) on a [small dataset of food and not food text](https://huggingface.co/datasets/mrdbourke/learn_hf_food_not_food_image_captions). See [source code](https://github.com/mrdbourke/learn-huggingface/blob/main/notebooks/hugging_face_text_classification_tutorial.ipynb). """ demo = gr.Interface( fn = classify_text, inputs = "text", outputs=[gr.Label(num_top_classes=2), gr.Textbox()], title="🍗🚫🥑 Food or Not Food Text Classifier", description=description, examples=[["I whipped up a fresh batch of code, but it seems to have a syntax error."], ["A delicious photo of a plate of scrambled eggs, bacon and toast."]]) # 4. Launch the interface if __name__ == "__main__": demo.launch()